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Abstract

DNN-based Adaptive Cruise Control (ACC) systems are
very convenient but also safety critical. Although many
prior works have explored physical adversarial attacks on
DNN models, those attacks are mostly static and their ef-
fects on a real-world ACC system are not clear. In this
work, we propose the first end-to-end attack on ACC sys-
tems, and we test the safety indication on the state-of-the-
art ACC product. The experimental results show that our
approach can make the vehicle driving with ACC acceler-
ate unsafely and cause a rear-end collision.

1. Introduction
Adaptive Cruise Control (ACC) is a Level-2 driving au-

tomation technology that can automatically adjust the ve-

hicle’s velocity based on the velocity and position of the

vehicle in front (a.k.a. the lead), to keep pace with the

lead, as well as staying at a safe distance from the lead.

Due to its high convenience for human drivers, ACC has

been available in vehicles from many manufacturers such

as Honda, Toyota, Nissan, Chevrolet, Subaru, and Volk-

swagen [4, 6, 3, 2, 5, 1]. Although convenient, ACC is ex-

tremely safety critical since if it makes the wrong driving

decision and accelerates/brakes unsafely, it may rear-end

the vehicle in front or get rear-ended by the vehicle behind.

The most critical step in ACC is lead detection. To

achieve this, most ACC systems use camera as the only or

major sensor to perceive the driving environment [4, 6, 3,

2, 5, 1]. Due to its high accuracy, Deep Neural Networks

(DNNs) are widely adopted in ACC systems to extract the

status of the lead from the image captured by camera. How-

ever, many previous works have shown that DNN models

are vulnerable to deliberately crafted inputs (a.k.a. adver-

sarial examples). More importantly, recent works have pro-

posed many adversarial examples that can be printed and

attached on a real-world object, making some DNN mod-

els used in Autonomous Driving (AD) systems malfunc-

tion. For example, in [17] and [21], real stop signs with

an adversarial poster or sticker on it cannot be detected by

object detection models such as YOLO v2 [14]. In [19],

after applying a mask on a license plate, this license plate

can no longer be recognized by an SSD model. Addition-

ally, in [18], vehicles covered with certain patterns can be

hidden from Light-Head RCNN [13]. Although in these

works, the proposed adversarial examples were tested un-

der various angles, distances, and illumination conditions.

They are all static attacks which have only been evaluated

with static images, and have not been tested with a product-

grade driving system. In a very recent work [16], an end-to-

end attack on lane-keeping assistance system is proposed;

however, this approach does not apply to ACC systems.

In this work, we design and implement the first approach

to attack DNN-based ACC systems. Specifically, 1) to prac-

tically and legally introduce perturbations, we add a patch

on the back of the lead to pretend to be a mobile adver-

tisement. 2) We develop an effective algorithm to con-

struct a robust physical adversarial patch that can mislead an

ACC system for a sufficient number of consecutive camera

frames, under various conditions. 3) We test the end-to-end

effect of the attack in CARLA [11], a widely-used driving

simulator: we import the lead vehicle with a patch on the

back into CARLA, and let the vehicle driving with Open-

Pilot ACC system [7] follow this lead in CARLA. Open-

Pilot is a state-of-the-art Level-2 AD product. The pre-

liminary results show that our attack can cause a rear-end

collision between two vehicles. Anonymized videos of this

attack are available at https://sites.google.com/
view/acc-adv/.

2. Background
ACC is one of the key functions in modern Level-2 AD

systems. With ACC, the driver only needs to set the max-

imum velocity VMAX , (a.k.a. the cruise velocity), and
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Figure 1. The work flow of adversarial patch generation.

the ACC system automatically adjusts the vehicle velocity

within [0, VMAX ]: if there is a close vehicle (a.k.a. a lead)

in front, the system controls the velocity of the ego vehicle

based on the position and velocity of the lead. For exam-

ple, if a slower vehicle moves in front of the ego vehicle,

the ACC system will control the ego vehicle to slow down;

when the lead accelerates and the velocity is higher than

VMAX or when the lead moves out of the way, the ego ve-

hicle will accelerate to achieve VMAX .
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Figure 2. The overview of the ACC system in OpenPilot.

Figure 2 shows an overview of the ACC system design

in OpenPilot. This system operates in three steps:

Lead Detection (LD). Lead detection is the most criti-

cal step in an ACC system, since the driving decisions are

made mainly based on the sensor inputs. Radars are very

accurate at detecting and tracking the status of objects (e.g.,

velocity), but they cannot tell if the detected object is a lead

(vehicle). Thus, in OpenPilot and many other recent ACC

products [6, 4, 3, 2, 5], both camera and radar sensors are

used to perceive the environment. First, as shown in Fig-

ure 2, a DNN model is used to extract the lead information

from each camera frame1. In frame t, the detected lead is

associated with the confidence score st ∈ [0, 1], and the sta-

tus of the lead yct = (dct , l
c
t , v

c
t , a

c
t), where dct and lct are the

distances between the lead and ego vehicle along the driv-

ing direction and lateral direction; vct and act are the veloc-

ity and acceleration of the lead (relative to the ego vehicle)

along the driving direction; we use superscript c, r for cam-

era and radar (mentioned later). Second, traditional signal

processing is used to extract the information of the objects

detected by radar. The i-th object in frame t can be repre-

sented as yr,it = (dr,it , lr,it , vr,it , ar,it ).

1Though rare, OpenPilot can detect multiple leads when there are mul-

tiple vehicles in front in the same lane with the ego vehicle. Here we only

consider the case in which one lead is detected since other leads are usually

obstructed by the closest lead.

Fusion. The detection results from camera and radar are

fused to get the final result. The detailed fusion process can

be found in [7]. In short, 1) if st < 0.5, this detected lead

is treated invalid; 2) if st > 0.5, yct is compared with each

yr,it in frame t to find the best match.

Longitudinal control and vehicle actuation. In

each frame t, the fused status of a valid lead (y∗t =
(d∗t , l

∗
t , v

∗
t , a

∗
t )) is sent to a Model Predictive Control

(MPC) [15] module to calculate the desired velocity and ac-

celeration for the next step. Then, the desired velocity and

acceleration are used by a Proportional-Integral (PI) control

loop [12] to control the gas and brake of the vehicle. With

a detected lead, the control objective is to smoothly achieve

the same velocity with the lead as well as maintaining the

safe distance with the lead. The safe distance is defined as:

dsafet = vegot ∗ TR− (vleadt − vegot ) ∗ TR
+ vegot ∗ vegot /(2G)− vleadt ∗ vleadt /(2G) + 4.

(1)

The safe distance in frame t, dsafet , is related to the abso-

lute velocity of the lead and ego vehicle (vleadt and vegot ). It

is the distance the ego vehicle needs if the lead starts brak-

ing at G m/s2 and TR seconds later the ego vehicle starts

braking too at G m/s2 and is able to eventually stop at 4
m away from the lead. In OpenPilot v0.8.3, TR = 1.8 and

G = 9.81.
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Figure 3. (a) A truck with advertisement on the side and back, and

(b) an example of ROI area.

3. Adversarial Attack on ACC
3.1. Threat Model and Problem Formulation

We assume an attacker who aims to attack the ACC sys-

tem on the victim vehicle to cause a rear-end collision be-

tween the victim vehicle and the lead in front of it. The at-

tacker can achieve this by manipulating objects in the phys-

ical world to “fool” the DNN model in the ACC system. We

assume that the attacker can possess the same ACC system

as the one on the victim vehicle and has full knowledge of

the ACC algorithm by either reverse-engineering the algo-

rithm or accessing the code repository if it is open-source.

Physical approach. We focus on the scenario in which

the attacker tries to launch the attack by placing an adver-

sarial patch on the back of a vehicle (i.e. an adversarial



vehicle), and cause the vehicle behind which is driving with

ACC to rear-end the adversarial vehicle. We choose this

attack scenario for two reasons:

R1: Feasibility. In many ACC systems, a Region of In-

terest (ROI) filtering is performed to the raw camera

frame before the DNN model is applied (Figure 3(b)).

This is to extract the most import area to improve the

accuracy of lead detection [20]. Thus, modifying ob-

jects out of the ROI area such as the surrounding build-

ings will not affect the lead detection.

R2: Legality. Within the ROI area, some previous

works proposed to manipulate the license plate of the

lead [19] or the patches on the road [16] to achieve

the attack. However, such approaches can be illegal in

many cities/countries. In contrast, modifying the ap-

pearance of a vehicle is more likely legitimate: 1) if

the attacker owns the adversarial vehicle, then he is al-

lowed to change the vehicle appearance (without cov-

ering the light, license plate, etc.) according to the law

in many places; 2) the attacker can also use a vehicle

that has advertisement on the back as the adversarial

vehicle. As shown in Figure 3(a), many truck com-

panies offer the back of the truck as a place for ad-

vertisement. Thus, the attacker can control the back

appearance of a truck legally by advertising.

Attack incentives. We consider two possible incentives:

business competition and automotive insurance fraud. First,

one ACC system provider may build an attack to cause an

accident on a vehicle driving with a rival company’s ACC

system, and thus damage its reputation as well as gaining

unfair competitive advantages. Second, automotive insur-

ance frauds happen very frequently in many countries [9].

Adversarial attacks can be a new way to perform the fraud:

the attacker can get compensation from the insurance com-

pany if the vehicle driving with ACC behind him is affected

by the patch and rear-ends the attacker’s vehicle.

3.2. Attack Algorithm

Our goal is to make a vehicle driving with an ACC sys-

tem (ACC vehicle for short) accelerate unsafely and even-

tually cause a rear-end collision. As shown in Section 2,

when driving at a velocity less than VMAX in frame t, an

ACC vehicle will accelerate when one of the two following

cases occurs: 1) st < 0.5; 2) st > 0.5, dct > dsafet +λ. λ is

caused by the fusion process and is about 0.25 ∗ dct . Thus,

different than previous attacks on object detection models

that only focus on reducing st to cause a disappearance at-

tack, we include both st and dct in our objective to learn

adversarial examples. And later in Section 4 we will show

that this change is very important to the attack.

Sequential attack. To have end-to-end impact on an

ACC system, the attack needs to affect a sufficient num-

ber of consecutive camera frames. In fact, the attacks on

later frames depend on the ones on earlier frames. For ex-

ample, if the adversarial patch successfully causes the lead

to be not detected or to be considered far away in frame t,

then the ACC system will control the vehicle to accelerate,

and the patch (and also the lead) will become larger in the

image captured in frame t+1. Thus, to cause a collision on

an ACC vehicle which is following a lead with a following

distance D0 (i.e. the distance between the lead and the ACC

vehicle), we need an adversarial patch that is robust when

the following distance lies in [0, D0]. To achieve this, we

use Expectation over Transform (EOT) [10] in our attack.

Specifically, given the digital template of the patch on the

lead x (e.g., the advertisement patch), we add perturbation

δ on it to generate the adversarial patch x
′
= x + δ. Then,

to apply EOT, we simulate the images taken by the cam-

era under different conditions: we collect real input images

from a driving simulator which are taken with the follow-

ing distance lying in [0, D0], under different weathers and

backgrounds, and rescale the adversarial patch to place it on

the vehicles in the sampled images, as shown in Figure 1.

The collected images can be denoted as

x′ = x+ δ

zi = T (x′, fi)
(2)

where T denotes the overall process of rescaling and placing

the adversarial patch, fi is the i-th sampled image.

3.3. Objective

The overall loss function is a combination of the adver-

sarial loss and the Total Variation (TV) loss:

L = Lconf + λ1Ldis
︸ ︷︷ ︸

Ladv

+λ2LTV . (3)

We consider the following mathematical formulation for

the adversarial loss:

Ladv = Lconf + λ1Ldis

= Ezi∈Z − log(1− s(zi))− λ1|d(zi)/df (fi)|
(4)

where s(zi) and d(zi) denote the confidence score of the

detected lead and the detected distance between the lead and

the ego vehicle, with the input image zi; d
f (fi) denotes the

following distance when the image fi was taken. Z is the

set of simulated images. We use binary cross entropy to

minimize the confidence score of the detected lead, and we

add the detected distance in the loss to maximize it.

In addition to the adversarial loss, we use TV loss as

done in [17], to smooth the perturbation pattern and make

it continuous, in case that the printing machine cannot ac-

curately distinguish pixelated patterns. The TV loss of the

adversarial patch can be formulated as:

LTV = Σ
i,j
|δi+1,j − δi,j |+ |δi,j+1 − δi,j | (5)



4. Evaluation
We evaluate our method on the state-of-the-art open-

source Level-2 AD system, OpenPilot [7], since it has been

shown to have better performance than products from many

other manufacturers [8]. The ACC system of OpenPilot

is introduced in Section 2. To test the end-to-end secu-

rity/safety effect of our attack, we perform the evaluation in

a driving simulator named CARLA [11]. Specifically, we

first “drive” a vehicle (controlled by OpenPilot) in CARLA

following a lead (a box truck) to collect some input images

(Step 1). Then, based on these images, we learn the adver-

sarial patch following the methodology in Figure 1 (Step 2).

Next, we modify the vehicle appearance in CARLA to place

the adversarial patch on the back of the lead (Step 3). Fi-

nally, we “drive” the OpenPilot vehicle again to follow the

lead with the adversarial patch on its back to test the attack

(Step 4).

In Step 4 above, we focus on a scenario where the lead

is slowing down. There are three phases in this scenario:

P1: The ACC vehicle is following the lead as normal at a

constant velocity which is 30-80 mph, and the follow-

ing distance is thus 28-70 m.

P2: The lead starts to slow down due to some special situa-

tion in front of it. Later, the ACC vehicle starts to slow

down accordingly, and it will get closer to the lead (be-

cause dsafet is smaller with lower velocity).

P3: When the distance between the two vehicles is smaller

than a threshold (D∗), the adversarial patch starts to

take effect and the ACC vehicle starts to accelerate un-

til hitting the lead.

Figure 4. The adversarial patch used in the experiments.

Early Results. To achieve the above attack, we train

the adversarial patch to be robust when the following dis-

tance lies in [0, D∗]. D∗ is 20 m in our experiments. For

the loss function, we set λ1 = 0.01, λ2 = 0.001. The ad-

versarial patch is shown in Figure 4. Figure 5 shows the

details of the ACC vehicle’s behavior when the lead is slow-

ing down from 40 mph, with/without the adversarial patch.

Here we assume that the speed limit of the road is 45 mph,

i.e. the driver sets VMAX to be 45 mph. At the beginning

when t < 5 s, the ACC vehicle is following the lead at
∼40 mph as normal. When t = 5 s, the lead starts slow-

ing down smoothly to eventually stop, and in the benign

case, the ACC vehicle will also slow down and eventually

stop at ∼4 m away from the lead. In contrast, in the attack
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Figure 5. The detailed process of the attack and benign case, where

dis denotes the following distance, dis detected is a binary which

represents if st > 0.5 is true.

case, although the ACC vehicle slows down at the begin-

ning, when t = 17 s and the following distance is 22.5 m,

the patch takes effect and the ACC vehicle starts to accel-

erate at t1 = 19.5 s and crashes into the lead at t2 = 26.6
s. The velocity of the lead increases after t2 because it is

pushed by the ACC vehicle.

As shown in Figure 5(a), from 22.5 s to 24.5 s the at-

tack on st is not very robust due to the variations on illu-

mination, background, and other conditions, and the ACC

vehicle thus starts to slow down. However, since we also

attack dct and make it much larger than the real following

distance, the ACC vehicle does not slow down dramatically

although there is a detected lead. dct is not as sensitive to the

mentioned variations as st because the DNN in OpenPilot

is very robust on st. We do not only attack dct because the

planner limits the acceleration when a lead is detected.

5. Concluding Remarks and Future Plans

In this work, we design and implement the first end-to-
end attack on real-world ACC systems. We evaluate our
approach on a state-of-the-art ACC system and the results
have shown that our attack can successfully cause a rear-end
collision on a vehicle driving with ACC. In the future, we
plan to perform more comprehensive evaluations in variant
driving scenarios and on more ACC systems. In addition,
we plan to propose a defense for this attack. Potential de-
fense mechanisms include 1) a better fusion algorithm, 2)
more sensor inputs (e.g., lidar), and 3) adversarial training.
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