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Abstract

Our field has recently witnessed an arms race of neural
network-based human trajectory predictors. Yet, adversar-
ial robustness of none of these methods has been carefully
studied in order to gain a better understanding of their lim-
itations. In this paper, by introducing socially-attended at-
tack, we assess the social understanding of the prediction
models in terms of collision avoidance. Technically, we de-
fine collision as a failure mode of the model, and propose a
soft-attention mechanism to guide our attack. We demon-
strate the strengths of our method on the state-of-the-art
trajectory prediction models. Finally, we show that our at-
tack can be employed to increase the social understanding
of state-of-the-art models. To access the code and the com-
plete paper (with more details and experiments), visit here:
https://s-attack.github.io/

1. Introduction

Understanding the social behavior of humans is a core
problem for many autonomous applications, such as social
robots [3] or self-driving cars [5, 2]. For a robot to navi-
gate among crowds safely or for an autonomous vehicle to
drive in urban areas harmlessly, human behavior anticipa-
tion is essential. In particular, dealing with humans makes
the problem safety-critical. For instance, a self-driving car’s
wrong prediction in a crosswalk can put a pedestrian’s life
in danger. Being a safety-critical problem raises the need
for careful assessments of the trajectory prediction methods
to mitigate the risks associated with humans. Consequently,
the robustness properties of those methods, as one of the im-
portant assessment aspects, should be studied.

The pedestrian trajectory prediction problem is to pre-
dict future positions of pedestrians given their past positions
as inputs. Recently, the problem has received solutions us-
ing neural networks. Various models based on Long-Short-
Term-Memory networks [1], convolutional neural networks
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Figure 1. Given the observation trajectories of the agents in the
scene, a predictor (here S-LSTM [1]) forecasts the future positions
reasonably (blue lines). However, with less than 5 cm perturbation
in the observation trajectory (in red), an unacceptable collision is
predicted.

[16], and Generative Adversarial Networks (GAN) [8] are
proposed. The core challenge of the problem lies in learning
the interactions between people. Therefore, explicit models
based on neural networks are designed to tackle the inter-
action more accurately [1, 22, 9, 15]. Humans’ interactions
involve different social behaviors such as collision avoid-
ance, walking within a group, and merging from different
directions into a specific point. Among all behaviors, col-
lision avoidance, i.e., people choosing a path that avoids
collision with others, is one of the key behaviors rarely vio-
lated. That is why many previous works consider respecting
collision avoidance as the evidence of their model being so-
cial [15, 9, 10]. Thus, we consider collision avoidance as an
indicator of social behavior of the models.

We show a conceptually plausible real-world scenario
in Figure 1. Given the observed trajectories of humans in
the scene, a social predictor forecasts the future positions
reasonably without collision. However, by adding a small
perturbation of less than 5 cm to the observation trajectory,
unexpectedly, a collision between predictions of agents oc-
curs which indicates a non-complete social understanding
by the predictors. The trajectories in that figure comes from
S-LSTM [1].

In this work, in contrast to the common adversarial at-
tacks which are designed for classifiers [17, 20], we design
attack for the trajectory prediction problem which is a mul-
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timodal regression task. We use adversarial examples to
study the collision avoidance behavior of the trajectory pre-
diction models. More specifically, we investigate the worst-
case social behavior of a prediction model under small per-
turbations of the inputs. This study has two primary mo-
tivations; (1) it is an evaluation method for the previously-
proposed predictors. Our method brings counter-examples
in which the models fail in having social behavior, i.e., it
cannot avoid collision. (2) leveraging adversarial examples,
one can train models with better collision-avoidance. Fur-
thermore, our study highlights practical concerns for em-
ploying such models in real-world applications. Notably,
it is shown that state-of-the-art localization algorithms give
on-average more than 0.2 m errors on human location de-
tection at each frame [7, 4]. While our work focuses on
model failures under adversarial settings, it motivates fur-
ther studies of the model’s performance when localization
algorithms’ error distribution is concerned.

We propose an adversarial attack to fool the trajectory
prediction models by causing collision between two agents’
predicted trajectories. Hence, the attacker tries to find
small perturbations that lead to a collision. The collision
can hypothetically happen between any two agents and at
any prediction timestep. However, from the attacker’s per-
spective, the choice of the agent and the timestep impacts
the final perturbation’s size significantly. To address that,
we introduce an attention-guided adversarial attack, named
Socially-ATTended ATTack (S-ATTack), which learns the
best collision points. Our experiments demonstrate that our
novel attack can find perturbations that make state-of-the-
art trajectory prediction models generate wrong predictions,
leading to collisions with small perturbations. Lastly, we
introduce an adversarial training scheme to make trajectory
prediction models more robust. In particular, we show how
our method can improve the models’ social understanding
in terms of collision avoidance. To the best of our knowl-
edge, this is the first work addressing the adversarial vulner-
ability and robustness of trajectory prediction models. Our
main contributions are summarized as follows:

• We introduce S-ATTack to assess the social under-
standing of the state-of-the-art trajectory prediction
models.

• We demonstrate how to improve the robustness prop-
erties of the predictors using our S-ATTack.

2. Method

In this section, we first explain the notations and defini-
tions. Then, we will provide the details of S-ATTack.

2.1. Formulation

2.1.1 Pedestrian trajectory prediction

Pedestrian trajectory prediction addresses a regression task
with sequences as inputs and outputs. At any timestep t, the
i-th person/agent is represented by his/her xy-coordinates
(xit, y

i
t). We denote each agents’ observation sequence for

Tobs timesteps as Xi, a Tobs × 2 matrix. Given the ob-
servations of all agents in the scene, the trajectory predic-
tor f predicts the next Tpred positions of all agents Y =
(Y 1, . . . , Y n+1) = f(X1, . . . , Xn+1). For brevity, we de-
note the observation sequences of the ego-agent and other
agents in the scene as X = (X1, . . . , Xn+1) and without
loss of generality, the ego-agent’s as X1. Number of non-
ego agents in the scene is denoted as n.

2.1.2 Adversarial examples for trajectory prediction

Equipped with the notations introduced in section 2.1.1, we
will provide a definition of adversarial examples for trajec-
tory prediction. In this paper, without loss of generality,
we focus on the collisions between the ego-agent and other
agents but it can directly be expanded to collisions between
any two agents. In addition, we assume the perturbation r is
added only to the ego-agent X̂1 = X1 + r while the obser-
vations of other agents {Xj}j 6=1 remain fixed. Therefore, r
is a Tobs×2 matrix of adversarial perturbation, the adversar-
ial example is X̂ = (X1+r,X2, . . . , Xn+1) and the output
of the predictor for that example is Ŷ = (Ŷ 1, . . . , Ŷ n+1) =
f(X̂). Formally, given a small constant ε > 0, a collision
distance threshold γ and the maximum of the norm of all
rows of a matrix ‖·‖max , a socially-attended adversarial
example is obtained if:

∃ r, j 6= 1, t : ‖r‖max ≤ ε⇒:
∥∥∥Ŷ j

t − Ŷ 1
t

∥∥∥ < γ, (1)

In other words, this type of adversarial examples is based on
perturbing an observation trajectory so that f predicts the
future timesteps with at least a collision occurring between
two agents j and 1 in one timestep t. In the next section,
we will describe how we obtain r using Socially-attended
attack.

2.2. Socially-attended attack (S-ATTack)

Given the perturbation r, and a model f , we define the
distance matrix D(r) ∈ Rn×Tpred as a function of the input
perturbation r. It includes the pairwise distance of all non-
ego agents from the ego-agent in all prediction timesteps.
Let dj,t denote the element at j-th row and t-th column of
D(r), i.e., the distance of the agent j from the ego-agent at
timestep t of the prediction timesteps. Hence, for a particu-
lar r, the distance matrix D(r) can be leveraged to indicate
whether a collision has occurred. We now explain a method



to find such a perturbation by optimizing a cost function
depending on D(r).

Note that sometimes a collision with a farther agent-
timestep may require smaller perturbation due to the gradi-
ent of the network. To address that, we let the attack attend
to the optimal target by itself. We introduce a soft-attention
mechanism in which the weights associated to each agent-
timestep is assigned by the attack in order to achieve a
smaller perturbation. The equation of the soft-attention at-
tack is as follows:

min
r,W

Tr
(
W> tanh(D(r))

)
+ λr ‖r‖F − λw ‖W‖F ,

s.t.
∑
j,t

wj,t = 1, wj,t ≥ 0,
(2)

where tanh is applied to the entries ofD(r) in order to con-
centrate less on very far agent-timesteps. Besides, W is the
attention weight matrix and wj,t is the attention weight for
the agent j at timestep t of the prediction timesteps. The
size of W is the same as D(r). Also, we discourage uni-
formity of weights by subtracting the Frobenius norm of W
multiplied by a scalar λw and we add the regularization on
the perturbation with the balancing coefficient λr that en-
courages finding a small perturbation sequence to make a
collision.

We use the gradient descent algorithm to optimize for
a given input sequence X . The attack stops if a collision
occurs. Furthermore, in each iteration, r is projected onto
the `∞ ball with a small radius ε around the observation X ,
similar to the Projected Gradient Descent (PGD) [12]. W
is initialized with a uniform distribution. It is progressively
updated and puts more weights to the more probable targets
for making a collision. Near the convergence point, the best
target agent receives a weight value close to 1 while the rest
receive 0.

3. Experiments
3.1. Baselines

In order to show the effectiveness of our attack, we con-
duct our experiments on six well-established trajectory pre-
diction models.
Social-LSTM [1] (S-LSTM): where a social pooling
method is employed to model interactions based on shared
hidden states of LSTM trajectory encoders.
Social-Attention [22] (S-Att): where a self-attention block
is in charge of learning interactions between agents.
Social-GAN [8] (S-GAN): where a max-pooling function
is employed to encode neighbourhood information. They
leverage a generative adversarial network (GAN) to learn
the distribution of trajectories.
Directional-Pooling [10] (D-Pool): where the features of

Model Original Attacked
CR [%] ↓ CR [%] ↓ P-avg [m] ↓

S-LSTM [1] 7.8 89.8 0.031
S-Att [22] 9.4 86.4 0.057
S-GAN [8] 13.9 85.0 0.034
D-Pool [10] 7.3 88.0 0.042
S-STGCNN [15] 16.3 59.1 0.11
PECNet [14] 15.0 64.9 0.071

Table 1. Comparing the performance of different baselines before
(Original) and after the attack (Attacked). Horizontal lines sepa-
rate models with different datasets.

each trajectory is learned using the relative positions as well
as the relative velocity and then pool the learned features to
learn social interactions.
Social-STGCNN [15] (S-STGCNN): where graph convo-
lutional neural network is employed to learn the interac-
tions.
PECNet [14] (PECNet): where a self-attention based so-
cial pooling layer is leveraged with a variational auto-
encoder (VAE) network.

3.1.1 Datasets

ETH [18], UCY [11], and WildTrack [6]: these are
well-established datasets with human positions in world-
coordinates. SDD [19]: The Stanford Drone Dataset is a
human trajectory prediction dataset in bird’s eye view. PEC-
Net is one of the state-of-the-art methods with official pub-
lished code on this dataset. Hence, we report PECNet per-
formance on this dataset.

3.1.2 Metrics

In the experiments, we report the performances according
to the following metrics:
Collision Rate (CR): this metric calculates the percentage
of samples in which at least one collision in the predicted
trajectories between the ego-agent and its neighbors occurs.
Note that we set the distance threshold for indicating a col-
lision γ in eq. (1) equal to 0.2 m .
Perturbation average (P-avg): the average of perturbation
sizes at each timestep which is added to the input observa-
tion in meters.
Average / Final Displacement Error (ADE/FDE): the av-
erage/final displacement error between the predictions of
the model and the ground-truth values.

3.2. Attack results

We first provide the quantitative results of applying S-
ATTack to the baselines in Table 1. The results indicate a
substantial increase in the collision rate (at least 3 times)



Original Attacked
ADE/FDE [m] ↓ CR [%] ↓ CR gain [%] ↑ CR [%] ↓ CR gain [%] ↑

D-Pool 0.57 / 1.23 7.3 - 37.3 -
D-Pool w/ rand noise 0.57 / 1.23 7.5 -2.7 36.1 +3.2
D-Pool w/ S-ATTack 0.60 / 1.28 6.5 +10.4 14.7 +60

Table 2. Comparing the original model and the fine-tuned model with random-noise data augmentation (D-Pool w/ rand noise) and S-
ATTack adversarial examples (D-Pool w/ S-ATTack). ADE, FDE are reported in meters.
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Figure 2. Comparison of the performance of different models under our attack. The ego-agent is depicted with green before the perturbation
and red after it. For brevity, we have not shown the prediction of non-ego agents before the attack. The scale of y axis is enlarged to better
show the difference. The orange X denotes the target point. Our attack achieves collisions with adding small perturbations.

across all baselines by adding perturbations with P-avg
smaller than 0.11 m. This questions the social behavior of
the models in terms of collision avoidance.

Figure 2 visualizes the performance of the three base-
lines S-LSTM, S-Att, and D-Pool under our attack with the
same input. We can observe that almost all models coun-
teract to avoid collisions. While these attempts show that
there exists some understanding of the collision avoidance
behavior in the prediction models, they are not enough for
avoiding a collision.

As D-pool performs better than others in terms of col-
lision avoidance before attack, in the rest of the paper, we
conduct our main experiments on it.

3.3. Enhancing the social understanding

We utilize our S-ATTack to improve the collision avoid-
ance of the model. To this end, we employ a similar ap-
proach to [13]. We fine-tune the model using a combination
of the original training data and the adversarial examples
generated by our S-ATTack method. In this experiment, we
set the maximum perturbation size ε equal to 0.03.

Table 2 indicates that the model’s collision avoidance
could improve by 11%. Moreover, the collision rate after
attack improves by 60% meaning that it is much less vul-

nerable to the attack. As shown in the table, fine-tuning the
model with random noise could not improve the collision
avoidance. Therefore, we conclude that our adversarial ex-
amples provide useful information to improve the collision
avoidance of the model. Note that the prediction error of
the model in terms of ADE/FDE is slightly increased. This
means that there exists a trade-off between accuracy and ro-
bustness. This can be similar to the findings in the previous
works on image classifiers [21].

4. Conclusion

In this work, we studied the robustness properties of tra-
jectory prediction models in terms of social understand-
ing under adversarial attack. We introduce our Socially-
ATTended ATTack (S-ATTack) to cause collisions in state-
of-the-art prediction models with small perturbations. Ad-
versarial training using S-ATTack can not only make the
models more robust against adversarial attacks, but also re-
duce the collision rate and hence, improve their social un-
derstanding. This paper reveals common weaknesses of tra-
jectory prediction models opening a window towards their
social understandings. As future work, we will use our find-
ings to improve the current neural network-based models.
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