Defending Object Detection Networks Against Adversarial Patch Attacks
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Abstract

We present a technique for defending object detection
networks against adversarial patch attacks (APAs). APAs
introduce carefully crafted overt regions into an image in
order to fool the network to create false detections. We
leverage adversarial training via a conditional Generative
Adversarial Network (GAN) that seeks to produce effective
attacks on the object detector whilst simultaneously training
the detector to resist those attacks. We report experiments
with several common detection networks (Faster/Mask R-
CNN and RetinaNet). We show our training-time defence
offers resilience against our GAN generated APAs that also
translates to other unseen APAs targeting object detectors.

1. Introduction

Object detection is a fundamental computer vision ca-
pability underpinning applications including robotics, se-
curity, and content analytics. Contemporary object detec-
tion methods are enabled via convolutional neural networks
(CNNSs) and so are prone to adversarial attacks; minor mod-
ifications to images at inference time that induce a signif-
icant change in the network prediction [26, 9]. Adversar-
ial attacks may be covert, via imperceptible changes dis-
tributed across an image [9, 20], or overt via adversar-
ial patch attacks (APAs) that introduce visible regions or
‘stickers’ [3, 6, 7]. APAs have recently been developed for
object detection, and thus there is an emerging threat to au-
tonomous systems relying upon visual sensing.

This paper contributes the first training-time defence
against APAs that target object detection networks. APAs
targetting object detection have been sparsely researched
and, consequently, few defences exist. Our core technical
contribution is to harness adversarial training to improve
the resilience of object detection models at training time.
Such training need not be applied from scratch, enabling
pre-trained models to be fine-tuned via our method in order
to confer protection against APAs.

Our training time defence utilises a conditional Genera-
tive Adversarial Network (GAN) that synthesizes patches to
attack the detector, whilst simultaneously improving the re-

Defended Mask R-CNN

Figure 1. Defending a segmetation network (Mask R-CNN)
against an adversarial patch attack introducing a spurious person
detection. An undefended Mask R-CNN (top) detects the patch
as ‘person’, whereas our defended Mask R-CNN (bottom) ignores
the patch and predicts the same as the ground truth (inset).

silience of that network against those patches. The GAN
synthesizes patches capable of hallucinating non-existent
objects. We show our framework to confer protection
against APAs to the network that generalizes beyond our
own APAs. We apply our defence to three common object
detection networks (Faster/Mask R-CNN and RetinaNet).

2. Related Work

Adversarial examples were introduced by Szegedy et al.,
who used box-constrained L-BFGS optimisation to find the
smallest possible perturbation that could induce misclassi-
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Figure 2. Proposed architecture for defending Faster/Mask R-CNN models against adversarial patches. The conditional patch generator
G synthesises patches targeting all 80 MSCOCO classes. We alternate training of D and G to encourage the model to learn resilience to

unseen patch attacks.

fication of an image [26]. The approach was later refined
[4, 9] using SGD instead of L-BFGS to reduce computa-
tional overhead without compromising the efficacy of the
adversarial examples produced.

Adversarial Patch Attacks (APAs) were introduced by
Brown et al., who restricted the perturbation to a small re-
gion of the image but allowed it to be arbitrary in magnitude
[3]. This allowed for an attack that would be robust to affine
transformations and could be printed and used in the real
world. Gittings et al. added a Deep Image Prior (DIP) as a
form of regularisation, constraining the generated images to
appear closer to natural images [7].

Adversarial Patches for Object Detectors were first
explored by Liu et al., who created a patch that could cause
the detector to ignore all objects in the image, limited by
needing to be inserted digitally into the image in a specific
place [17]. Chen et al. and Eykholt et al. independently
created adversarial patches for object detection using stop
signs [5, 25]. Thys et al. created a physical attack caus-
ing the disappearance of people when a patch was applied
on them [27]. Braunegg et al. introduced an attack which
attempts to create a new object at the patch location [2].

Defences Against Adversarial Images. The first de-
fence against adversarial attacks was proposed by Szegedy
et al. alongside the attacks themselves [26]. This was ad-
versarial training, where adversarial examples are created
during the training of the model and then included as part
of the training data. When this method was originally pro-
posed it was impractical, since there was no fast way to
produce adversarial examples. This problem was resolved
by the introduction of FGSM by Goodfellow et al. [9], and
the method developed further by others [18, 24, 14]. Other
defences use GANs or autoencoders to remove adversarial
perturbations at inference time, by projecting the input onto
a manifold of natural images [19, 23, 13].

Defences Against Adversarial Patches (APAs). Early
APA defences made use of inference-time filtering to try
and remove patches or otherwise modify them to make them

less effective [10, 21, 1]. All these inference-time meth-
ods significantly degrade the classification performance on
clean images in exchange for providing protection against
adversarial patches. Braunegg et al. trained a detector to
recognise adversarial patches as a specific class, along with
MSCOCO object classes, by creating a dataset of patches
in advance [2]. This is not true adversarial training, since
the attack is not updated during the training process. Git-
tings et al. [8] applied adversarial training to patches via
Vax-A-Net; using a conditional patch generator to allow the
patches to be updated during training.

3. Method

In this work we study APAs on detection networks
Faster-RCNN and RetinaNet, as well as the Mask-RCNN
segmentation network. The attacks we consider are based
on the APRICOT methodology of Braunegg et al. [2]. The
goal of these attacks is to cause the detector to identify an
object of some target class c in the location of the patch,
when no such object is present in the image. Our aim is to
defend the networks against these attacks at training time.
Our training architecture (Figure 2) is inspired by Vax-A-
Net [8]; an adversarial training method used to mitigate
APAs on image classification networks. The architecture
synthesises the patches using a conditional generative net-
work (), and applies an adversarial training process to up-
date the generator while simultaneously training the detec-
tor (D) to build resistance to the patches.

3.1. Adversarial Patches for Object Detection

An adversarial patch for an object detection or semantic
segmentation network D is an image p which is designed
to cause D to return spurious detections around p when it
is applied on top of any legitimate image x. Formally we
define A(p,x,l,t) to be to image x on which the patch p
has been applied at location [ with affine transformation ¢.

During training and testing we sample [ randomly from



all possible patch locations and for ¢t we randomly scale the
patch to take up between 5% and 25% of the area of the
image and rotate it randomly up to 20 degrees in either di-
rection. During the training process the image z is sampled
from the full MSCOCO training set, in order to produce
general patches which are effective on any image.

Loss Function. The loss function for the patches is
La = L(A(p, x,1,t),C(I, 1)) + Print(p) + TV(p), (1)

where L is the standard loss function for training the de-
tector in question (i.e. Faster/Mask R-CNN or RetinaNet),
Print gives a non-printability score [27], which favours
colours in the patch which can be easily represented on
a CMYK printer, and TV is the total variation, also in-
cluded to encourage better printability. C(I,¢,c) provides
the ‘ground truth’ for the purpose of patch training, i.e. it
returns a bounding box and mask for the adversarial patch
applied to the image.

Patch Training. To provide a fair test of our methodol-
ogy against the broadest range of APAs we implement two
versions of the attack. The first (A-ADS) is the method of
Braunegg et al. [2], which optimises the pixels of the ad-
versarial patch directly. The other (A-DIP) is inspired by
Gittings et al. [7], which uses a deep image prior to regu-
larise the generation of the patch and provide a different ap-
pearance that will more thoroughly test our defences. Both
methods produce adversarial patches of size 300 x 300.

3.2. A Training Time Defence for Object Detection

Patch Generator. The conditional patch generator G takes
as its inputs an /N x 100 noise vector z and an N x 80
class vector ¢, where N is the batch size. It uses five up-
convolutional layers to produce patches of size 64 x 64 tar-
geting the classes in c.

Discriminator/Detector. The loss function for D is defined
as follows:

where y is the ground truth. The first term tries to ensure
that clean images are correctly classified and the second is
aiming for images with adversarial patches to be correctly
classified.

Training Methodology Our network is trained in a sim-
ilar manner to a Generative Adversarial Network (GAN).
The object detection or segmentation network that we are
defending takes the place of the discriminator in the GAN
architecture. Instead of the discriminator acting as a tool to
make the generator better, we are using the generator in or-
der to produce a more effective discriminator. When train-
ing the networks we train alternately the discriminator and
generator at each iteration, the same as for a normal GAN.
The generator is pre-trained for 270,000 epochs prior to
training the discriminator. After this the generator and dis-
criminator are trained together for another 270,000 epochs

Method | Undefended D-ROD (ours)
FRCNN R-50 41.79 41.38
FRCNN X-101 45.26 44.44
RN R-50 40.64 40.77
MRCNN R-50 BB 42.58 42.24
MRCNN R-50 Seg 41.70 41.30
MRCNN X-101 BB 45.70 45.54
MRCNN X-101 Seg 44.00 43.77

Table 1. Control: Mean Average Precision (mAP) of models on
clean MSCOCO test images (i.e. without any adversarial patch).

to provide protection against adversarial patches. Both the
generator and discriminator use Adam optimisers, with a
learning rate of 0.0001.

4. Experiments and Discussion

We evaluate the efficacy of our training-time defence
for Faster R-CNN (FRCNN) [22], RetinaNet (RN) [15]
and Mask R-CNN (MRCNN) [11]. For Faster R-CNN
and Mask R-CNN we test both ResNet-50 (R-50) [12] and
ResNeXt-101 (X-101) [28] backbones, and for RetinaNet
we test only the ResNet-50 backbone.

4.1. Datasets and Metrics

We evaluate using the MSCOCO 2017 dataset [16]. All
our defended networks begin with networks pre-trained on
MSCOCO, and are finetuned on the full MSCOCO 2017
training set, with patches generated to attack all 80 COCO
classes. To evaluate our defences, we generate patches to
attack the subset of 10 COCO classes picked by Braunegg
et al. [2]. We report the Mean Average Precision (mAP)
of the detectors, averaged across the set of 10 test classes.
For Mask R-CNN networks we report the mAP for both
detection (BB) and segmentation (Seg) tasks.

4.2. Our Defence vs Attacks

We evaluate the efficacy of our defence by subjecting it
to two adversarial patch attacks, described in Section 3.1.
We include both of these attacks because the DIP regulari-
sation introduces substantially different textures in the patch
when compared to the unregularised attack. We refer to our
defended network as D-ROD, for ‘Robust Object Detector’.

We test our defended network with attacks trained in two
different ways. The first is a white box (WB) attack, in
which the patches are trained on the final defended network.
The second is a form of grey box (GB) attack, in which we
use the same patches that are used for the undefended net-
work, i.e. they are trained on the network with the publicly
available weights before any adversarial training is applied.
We also include a ‘noise’ patch for comparison; this is a
300 x 300 patch filled with uniform random noise on the
interval [0, 1), which provides a baseline for an optimal de-
fence, since it is occluding the image in the same way as the
adversarial patches but without any adversarial component.



Architecture | Defence | A-ADS A-DIP  Noise Architecture | Defence | A-ADS A-DIP Noise

Undefended 3.86 4.75 35.11 Undefended 3.86 4.75 35.11
FRCNNR-50 D-ROD 33.06 9.71 36.39 FRCNN R-50 D-ROD 5.63 5.11 36.39

Undefended 4.49 12.74 37.60 Undefended 4.49 12.74 37.60
FRCNN X-101 D-ROD 36.63 23.32 38.86 FRCNN X-101 D-ROD 7.34 19.64 38.86

Undefended 3.52 3.81 33.48 Undefended 3.52 3.81 33.48
RN R-50 D-ROD 30.94 14.98 33.93 RN'R-50 D-ROD 4.43 4.86 33.93
MRCNN R-50 Undefended 4.00 5.39 35.64 MRCNN R-50 Undefended 4.00 5.39 35.64
(BB) D-ROD | 2827 1434 37.14 (BB) D-ROD 791 919  37.14
MRCNN R-50 Undefended 3.44 4.75 33.48 MRCNN R-50 Undefended 3.44 4.75 33.48
(Seg) D-ROD 27.11 13.26 34.99 (Seg) D-ROD 7.11 8.40 34.99
MRCNN X-101 | Undefended 4.36 7.72 38.76 MRCNN X-101 | Undefended 4.36 7.72 38.76
(BB) D-ROD 40.55 20.39 40.38 (BB) D-ROD 14.89 17.55 40.38
MRCNN X-101 | Undefended 3.75 6.93 35.88 MRCNN X-101 | Undefended 3.75 6.93 35.88
(Seg) D-ROD 38.66 19.10 37.97 (Seg) D-ROD 13.70 16.11 37.97

Table 2. mAP of models with grey box (GB) patches applied, i.e.
patches trained on the original undefended network.

Control experiment. Table 1 shows the performance of the
defended networks compared to the undefended network on
clean images, i.e. MSCOCO images without any adversar-
ial patch applied. In all cases the mAP for the defended
network is within 1% of the undefended network, which
demonstrates that the defence does not impact the perfor-
mance on clean images.

Grey box (GB) attacks. In Table 2 we examine how the
networks perform against attacks generated only on the un-
defedned network. The undefended network performs very
poorly on these attacks, with the mAP in most cases being
reduced to less than 5%. The noise patches reduce mAP for
all the networks by 5-9% suggesting that this is the impact
of occlusion, which is much less significant than the adver-
sarial component of the patch. The defended networks do
marginally improve the performance on these noise patches,
suggesting that the network can learn to do a slightly bet-
ter job of ignoring these occlusions if trained correctly. In
the case of all the networks, apart from MRCNN R-50, the
performance of against A-ADS is within 4% of the per-
formance on noise patches, demonstrating good protection
against this type of adversarial attack, despite it not being
explicitly included during training. In the case of MRCNN
R-50, the mAP on A-ADS is still within 8% of the mAP
for noise patches, indicating quite good but imperfect pro-
tection. For A-DIP the mAP ranges from 9% to 24%. This
indicates that the network is not able to completely defend
against this style of attack, likely because the patches that
the generator is able to produce are not sufficiently simi-
lar to the A-DIP patches, but even reasonable protection is
afforded by our defence.

White box (WB) attacks. Results for fully white box at-
tacks appear in Table 3. In the case of A-DIP on FRCNN
X-101 and both attacks on MRCNN X-101, the mAP on
the defended network is over 13%, which suggests that the

Table 3. mAP of models with white box (WB) attacks, i.e. adver-
sarial patches trained directly on the network they are applied to.

defence is having a significant impact on the effectiveness
of the attacks and providing substantial but not complete
protection in these cases. For the remaining networks and
attacks the mAPs are all improved over the undefended net-
works, but below 10%. This indicates that these networks
are not defended very well against fully white box attacks.
The reason for this poor performance on white box attacks
compared to grey box attacks is probably that the generator
was not able to synthesise enough attacks for the network
to defend against to ensure complete protection against any
possible attack, which could be caused by insufficient train-
ing time, incorrect choice of optimiser, sub-optimal training
schedule, or others.

5. Conclusion and Future Work

In this paper we proposed the first training-time defence
against APAs applied to object detection networks. Inspired
by the Vax-A-Net architecture [8] for adversarial defence of
image classification networks, we explored use of a con-
ditional patch generator to synthesise patches, which the
networks learn to defend against with an adversarial train-
ing methodology. Our experiments showed that the method
produced good protection against unseen attacks created us-
ing the original network, and partial protection against those
produced directly on the defended network. These results
show good promise for this form of adversarial training
against APAs in the novel domain of object detection net-
works.

The primary direction for future work is to modify the
training process to improve the performance against white
box APAs, to a level comparable with that demonstrated on
grey box attacks. In scenarios an attacker may have access
to a deployed network with weights for training purposes,
motivating resilience to such attacks.
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