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Abstract

Backdoor attacks inject poisoned samples during train-
ing to force a machine-learning model to output an
attacker-chosen class when presented a specific trigger at
test time. Although backdoor attacks have been demon-
strated in a variety of settings and against different mod-
els, the factors affecting their effectiveness are still not well
understood. In this work, we provide a unifying framework
to study the process of backdoor learning under the lens of
incremental learning and influence functions. We show that
the effectiveness of backdoor attacks inherently depends on
(i) the complexity of the learning algorithm, controlled by
its hyperparameters, and (ii) the fraction of backdoor sam-
ples injected into the training set. These factors affect how
fast a machine-learning model learns to correlate the pres-
ence of a trigger with the target class. Interestingly, our
analysis shows that there exists a region in the hyperparam-
eter space in which the accuracy on clean test samples is
still high while backdoor attacks become ineffective, thereby
suggesting novel criteria to improve existing defenses.

1. Introduction

Machine-learning models are vulnerable to backdoor
poisoning [11, 18, 23], i.e., the injection of poisoning train-
ing samples embedding a specific trigger, and assigned to
an attacker-chosen class label. Under this attack, the clas-
sifier is misled to predict the attacker-chosen class when-
ever a sample containing the trigger is presented at test
time. Although backdoor attacks have been demonstrated
in a plethora of scenarios [11, 18, 27], the main factors be-
hind their effectiveness are still poorly understood.

In this work, we propose a unifying framework to
analyze the learning process and identify the main fac-
tors affecting the vulnerability of machine-learning mod-
els against backdoor attacks. To this end, we define the
notion of backdoor learning curves (Sect. 2) by formulat-

ing backdoor learning as an incremental learning problem.
More specifically, these curves show how the loss on back-
doored points changes depending on the exposure to back-
doors during training. To quantify how susceptible a model
is to a backdoor attack, we introduce the notion of back-
door learning slope, a concept related to influence func-
tions [14]. Intuitively, the higher the slope is, the quicker
the model learns to incorporate the backdoor sample, thus
being more vulnerable to such an attack. Our experimen-
tal analysis (Sect. 3) shows that the main factors that influ-
ence how fast the backdoor is learned are: (i) the fraction of
backdoor samples injected into the training data, and (ii) the
complexity of the target model, controlled via its hyperpa-
rameters. We surprisingly show that there is a region in the
hyperparameter space in which the model is highly accurate
on the clean samples but remains robust to backdoor poison-
ing. This behavior may be used to select more robust hy-
perparameter configurations against backdoor attack, thus
inspiring novel defense mechanisms. We conclude the pa-
per by discussing related work (Sect. 4), conclusions and
future research developments (Sect. 5).

2. Backdoor Learning Curves

Before we introduce backdoor learning curves and the
related concept of backdoor learning slope, we define no-
tation. The input data is x ∈ Rd and their labels are y ∈
{1, .., c}, where c is the number of classes. The untainted,
clean training data are Dtr = (xi, yi)

n
i=1, and the backdoor

samples injected into the training set are Ptr = (x̂j , ŷj)
m
j=1.

The set of backdoor samples presented at test time is de-
noted with Pts = (x̂t, ŷt)

k
t=1. L(D,w) is used to mea-

sure the loss attained by the classifier, parameterized by w,
on the dataset D, while L(D,w) additionally includes any
regularization term that may be optimized during training.
Accordingly, the loss attained by the classifier on the back-
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(a) Strong regularization (λ = 10).
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(b) Weak regularization (λ = 1).

Figure 1: Model complexity, backdoor learning curves and backdoor accuracy. Using an SVM with an RBF kernel (γ = 10.0)
on a toy dataset in two dimensions, we show the influence of model complexity (as measured by λ, set to 10 (left) and 1
(right)). Each setting is visualized using two plots, where the left shows the data (dots) and decision surface for different
β-values (green lines). The right plot shows the backdoor learning curve, where the y-axis depicts the test loss and the x-axis
shows β. We plot both the backdoor loss (blue line) and the loss on clean data (orange dotted line). The slope of these curves
represents the ease of the model to fit the backdoored samples. The model on the left struggles to fit the backdoors, and
succeeds only with high β, whereas the model on the right already fits the model at low β.

door samples presented at test time is given as

L(Pts,w
?(β)) =

k∑
t=1

`(x̂t, ŷt,w
?(β)) , (1)

where w?(β) represents the classifier parameters, obtained
by solving the following learning problem:

w?(β) ∈ arg min
w

L(Dtr ∪ Ptr,w) =

=

n∑
i=1

`(xi, yi,w) + β

m∑
j=1

`(x̂j , ŷj ,w) + λΩ(w)
(2)

In this learning problem, Ω(w) corresponds to the reg-
ularization term (e.g., ‖w‖22), and λ is the associated reg-
ularization hyperparameter. We additionally introduce the
hyperparameter β ∈ [0, 1] in the learning problem to ex-
plicitly control the injection of the backdoor samples into
the training process, inspired from previous work on incre-
mental learning [4, 12]. As β ranges from 0 (unpoisoned
classifier) to 1 (poisoned classifier), the classifier gradually
learns the backdoor by adjusting its parameters. For this
reason, we make the dependency of the optimal weights w?

on β explicit and write w?(β).
Backdoor Learning Curves. We can now define the back-
door learning curve as the curve showing the behavior of
the loss L(Pts,w

?(β)) in Eq. (1) as a function of β. Intu-
itively, the faster this curve decreases, the easier the target
model is backdoored. We give an example of two backdoor
learning curves under different regularization in Figure 1.
The left plots depict a strongly regularized classifier. The
corresponding backdoor learning curve shows that the clas-
sifier achieves low loss and high accuracy on the backdoor
samples only after poisoning when β = 1. On the other

hand, the classifier on the right is less regularized and more
complex. As a consequence, the classifier learns to incor-
porate the backdoor samples much faster or at low β, high-
lighting that it might be more vulnerable to this attack.

Backdoor Learning Slope. To quantify how fast an un-
tainted classifier can be poisoned is thus expressible in
terms of the gradient of the backdoor learning curve at
β = 0. In mathematical terms, we write

∂L(Pts,w
?(β))

∂β
=
∂L

∂w

∂w?

∂β
= −∇wL·(∇2

wL)−1·∇β∇wL .
(3)

As suggested from previous work in incremental learn-
ing [4], we assume that, while increasing β, the so-
lution maintains the optimality (Karush-Kuhn-Tucker,
KKT) conditions intact. This equilibrium implies that
∇β∇wL(w?) + ∂w?

∂β ∇
2
wL(w?) = 0, and based on this

condition, we were able to obtain the derivative of inter-
est. This derivative, or Eq. 3, also corresponds to the sum
of the pairwise influence function values Iup,loss(xtr,xts)
used by Koh and Liang [14].

However, directly using the gradient of the loss wrt. β
has two disadvantages. First, the slope is inverse to β and
second, to obtain comparable results across classifiers, we
need to rescale the slope. We thus transform the gradient as

θ = − 2

π
arctan

(
∂L

∂β

∣∣∣∣
β=0

)
∈ [−1, 1] , (4)

where we use the negative sign correlate positive values
with faster backdoor learning (i.e., the loss is decreasing
faster as β grows). Computing 2/π of the gradient allows us
to rescale the slope to be in the interval between [−1, 1].



3. Experiments
Using the previous methodology, we carried out an em-

pirical analysis on linear and nonlinear classifiers under dif-
ferent regularization. The goal of our analysis is to show
the properties and components that affect the slope of the
backdoor learning curve and thus the sensitivity of a model
to backdoor attacks. Our experiments show that a key fac-
tor affecting the backdoor slope and thereby backdoor ac-
curacy is the regularization term λ. We find evidence that
there exists an area where the accuracy on benign samples
remains high, yet the classifier is robust to the backdoor.
Subsequently, our experiments show that when increasing
the fraction of injected poisoning points, the classifier learns
the backdoor faster. In particular, the backdoor is learned
without sacrificing clean test accuracy, as long as the clas-
sifier has enough flexibility. Finally, we analyze the change
of the parameters weights during the backdoor learning pro-
cess. We found that linear classifiers have to increase their
complexity in order to learn the backdoor. Conversely, non-
linear ones are already flexible enough to learn the back-
door without significantly increasing their complexity. Be-
fore we discuss these results in detail, however, we describe
the experimental setup.

3.1. Experimental Setup

We first detail the datasets, then the models with their
hyperparameters and finally the backdoor attacks and the
applied triggers we implemented.

Datasets. In our analysis, we consider the CIFAR10 [15]
dataset. Analogous to prior work [23], we chose airplane
vs frog, bird vs dog, and airplane vs truck. In the follow-
ing section, we focus on the results of one pair (airplane vs
frog on CIFAR10). Appendix A contains the results of the
other pairs and additional results on MNIST.

Models, Training and Hyperparameters. We consider
various models to thoroughly analyze how learning a back-
door affects a model. More specifically, we analyze the
results for Support Vector Machines (SVMs) with a Ra-
dial Basis Kernel (RBF). The results using linear SVM
(SVM), Logistic Regression (LC), and Ridge Classifiers
(RCs) in the Appendix. Analogously to the setting by Saha
et al. [23], we train all models in a transfer learning setting
with pre-trained Alexnet [16] used as a feature extractor.
The hyperparameter choices are motivated in Appendix A.

Backdoor Attacks. We add a trigger to 10% of the training
data if not stated otherwise. The trigger is a random 8 × 8
patch to strengthen the attack [23]. We replace the lower
right corner of the image pixels with the trigger pattern, as
done in [11]. Visual examples for samples with and with-
out trigger can be found in the Appendix. After training, the
presence of a trigger forces the backdoored model to predict
the i-th class as class (i + 1)%2 [11]. However, our study

Figure 2: Backdoor learning curves for SVM on CIFAR10
airplane vs frog with γ = 1e−04. Left plot shows λ = 10,
right plot λ = 1. Darker lines represent a higher fraction
of poisoning samples p injected into the training set. We
report the loss on backdoored (BK) test (solid line), and the
loss for clean test samples (dashed line).

also encompasses linear models that are unable to associate
the same trigger pattern to two different classes. Thus, in
contrast to previous approaches [11], we use a separate trig-
ger for each base-class i.

3.2. Experimental Results

Having detailed the experimental setup, we can now dis-
cuss our experimental results.
Backdoor Learning Curves. In this experiment, we inves-
tigate how the amount of backdoored samples in the training
set affects backdoor learning of differently regularized clas-
sifiers. In Figure 2 we show the backdoor learning curves
under different values of β for RBF SVM trained on CI-
FAR10, full results are in the Appendix. We increase the
fraction of poisoning samples p ∈ {0.01, 0.1, 0.2}, where
larger values of p correspond to darker lines in the plot.

As visible in Figure 2, both smaller λ and larger p in-
crease the slope of the backdoor learning curve. More
specifically, when decreasing λ, the backdoor learning
curve drops faster. This drop suggests that more complex
classifiers are able to learn the additional backdoor classi-
fication task at lower β. In addition, the fraction of poi-
soning samples p injected into the training set plays an im-
portant role. As p increases, the backdoor learning curves
get steeper, and consequently the classifier learns the back-
door at lower β. The accuracy for benign samples, how-
ever, does not change as p grows larger. We conclude that
less regularized, or more complex models indeed learn the
backdoor faster than their regularized counterparts. How-
ever, the amount of backdoored samples in the training set
also influences how well a backdoor is learned, and how
accurate the classifier is on data without trigger.
Backdoor Slope. As seen in Section 2, the influence func-
tion proposed by Koh and Liang [14] is the partial deriva-
tive of the backdoor learning curve at the point β = 0. We
investigate the backdoor effectiveness through the lens of



Figure 3: Backdoor slope θ vs backdoor (BK) effectiveness
and clean accuracy on CIFAR10 airplane vs frog. We set
γ0 = 1e−04 (orange triangle for clean data, light blue plus
for data with trigger) and γ1 = 1e−03 (red inverted triangle
for clean data, dark blue x for data with trigger).

the influence functions when the fraction of poisoning at
p = 0.1%, as studied by Gu et al. [11]. We train the target
classifiers on the poisoned data under the previously defined
regularization conditions. Figure 3 shows the relationship
between the backdoor slope and the backdoor effectiveness.
We measured the backdoor effectiveness as the percentage
of samples with trigger that mislead the classifier. We report
results for γ ∈ {1e−04, 1e−03}. In Figure 3, the blue ‘+’
and ‘x’ lie roughly on the bisect line. This means that back-
door accuracy tends to increase when the backdoor slope
increases. Thus a higher slope implies higher vulnerability
to backdoor attacks. As the clean accuracy (red and orange
triangles) in Figure 3 is rather high regardless of the back-
door slope, there is a region where backdoor effectiveness is
low and benign accuracy is high (left side of the plot). These
findings, along with the extended analyses reported in Ap-
pendix A, show that the best trade-off is achieved when λ
and γ are small, i.e., when the classifier is strongly regular-
ized, which makes it harder to learn the backdoor pattern.

A deeper understanding of backdoor learning. We have
shown that more complex, weakly-regularized models are
more vulnerable to backdoor attacks, as they are able to
fit the backdoor samples more easily. Further experiments
confirming this hypothesis are reported in Appendix A,
where we consider more datasets, classifiers and hyperpa-
rameters. Moreover, in Appendix B we show that less com-
plex models tend to monotonically increase their complex-
ity during the backdoor learning process to preserve high
accuracy for both clean and backdoor samples. These re-
sults are also supported in our explainability analysis re-
ported in Appendix C.

Summarizing, our findings suggest that an appropriate
choice of complexity-regulating hyperparameters such as λ
can help in building new defences or improving existing ap-
proaches in terms of backdoor robustness.

4. Related Work
We first review the literature about backdoors and then

the related work in the area of influence functions.
Backdoors Although introduced recently [11, 5], there is
a plethora of backdoor attacks and backdoor defenses. An
overview can for example be found in the survey by Gao
et al. [9] or Goldblum et al. [10]. Few works study back-
doors not as attack or defense but rather as a phenomenon.
For example, Frederickson et al. [8] study the trade-off be-
tween strength of an attack, effectiveness and detectability
in backdoor triggers. We instead focus on the relationship
between model complexity or regularization and attack ef-
fectiveness. Wang et al. [25] study the vulnerability of en-
sembles versus individual classifiers. However, we focus
on the robustness or vulnerability of individual classifiers.
Carnerero-Cano et al. [3] study the effect regularization has
on poisoning, however focusing on indiscriminate attacks
that reduce accuracy (e.g., not on backdoors). Finally, Ba-
luta et al. [1] study backdoor generalization using their for-
mal framework in binary neural networks. They conclude
that the trigger is only effective when combined with im-
ages from the training distribution. We do not study out
of distribution samples with a trigger, and instead focus on
the effect of regularization on backdoors. We are the first
to experimentally show and outline a relationship between
model complexity and backdoor effectiveness.
Influence functions stem from robust statistics [7] and
were later used as a tool to measure the influence of train-
ing points on the classification output on for example an
SVM [6] or deep learning [14]. However, Basu et al. [2]
showed later that influence functions are more reliable in
shallow models as they are fragile in deep learning.

5. Conclusions
In this work, we have presented a framework to analyze

the factors that influence the effectiveness of backdoor poi-
soning. Our work shows that this backdoors effectiveness
inherently depends (i) on the number of backdoor samples
injected into the training dataset and (ii) the target model’s
complexity. Furthermore, we show a region in the hyperpa-
rameter space in which the accuracy on clean test samples
is still high while the accuracy on triggered backdoors is
low. Our experiments were carried out on convex learners.
It remains thus an open question whether our findings gen-
eralize to deeper models. Moreover, measuring the com-
plexity of deep learning models is an open research ques-
tion. Hence, we leave the interpretation and investigation of
the found trade-off between clean and backdoor accuracy in
deep learning models for future work. We also leave for fu-
ture work the integration of factors like the amount of clean
and poisoned data, the size and shape of the trigger, or the
size of the input space.
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Appendix

A. Additional Experimental Results
In this section, we present additional experimental re-

sults that confirm our claims.
Datasets. In our analysis we also consider the MNIST [17]
dataset. We chose 7 vs 1, 3 vs 0, and 5 vs 2, as on these
pairs our models exhibited the highest clean accuracy.
Hyperparameters. We vary λ in
{1e−03, 1e−02, 1e−01, 1, 1e+01, 1e+02, 1e+03, 1e+04}.
Concerning the RBF kernel, we let γ take uniformly spaced
values on a log scale in [5e−04, 5e−02] for MNIST
and [1e−04, 1e−02] for CIFAR. Furthermore, we chose
λ ∈ {1e−03, 1e−02, 1e−01, 1, 1e+01} on the RBF kernel.
For all hyperparameters, the accuracy on clean data (e.g.,
without backdoors) is > 90% for MNIST and CIFAR10.
An exception is the configuration with γ = 5e−02 and
λ = 1e+01, where the accuracy on samples without trigger
is only 75%.
Implementation. We rely on public libraries to implement
our models [22, 21], standard procedures like reading and
accessing data [20], mathematical computations like for ex-
ample norms or gradients [24, 19] and to create the plots in
our paper [13, 26].
Backdoor Learning Curves. In the paper, we have shown
the backdoor learning curves only for the SVM RBF on
CIFAR10, here, we report them for all the classifiers and
datasets considered in our work. In particular, here we con-
sider:

• Logistic Classifier (LC) with λ ∈ {10, 0.01} (MNIST)
or λ ∈ {1000, 0.1} (CIFAR10),

• Support Vector Machine (SVM) with λ ∈ {100, 0.1}
(MNIST) or λ ∈ {10000, 0.1} (CIFAR10),

• Ridge Classifier (RC) with λ ∈ {1000, 1} (MNIST) or
λ ∈ {10000, 100} (CIFAR10),

• SVM with an RBF kernel, where λ ∈ {1, 0.01} and
γ = 5e−03 (MNIST) or λ ∈ {10, 1} and γ = 1e−03
(CIFAR10).

Moreover, we compare the results obtained on the class
pairs considered in the paper (airplane vs frog on CI-
FAR10), shown in Figure 7, with the one obtained on dif-
ferent pairs.

In the following, we present the results obtained on class
pairs different from those considered in the paper. We show
the results obtained on the MNIST dataset for class pairs:
7 vs 1 (Figure 4), 3 vs 0 (Figure 5) and 5 vs 2 (Figure 6). We
further show the results obtained on the class pairs bird vs
dog (airplane vs truck) of the CIFAR10 dataset in Figure 8
(Figure 9).



These additional experimental results are coherent with
the ones reported in the paper.
Backdoor Slope. In Figure 10 and 11, we report the back-
door learning slope, computed with p = 0.1, for all the
considered classifiers and all subset pairs. For the SVM-
RBF, we have reported the results obtained on MNIST with
γ0 = 5e−04 and γ1 = 5e−03 and on CIFAR10 with
γ0 = 5e−04 and γ1 = 5e−03. The results do not show
significant variation with respect to the ones reported in the
paper.

B. Backdoor Impact on Learned Parameters
In this section, we investigate the influence of learning

backdoors on classifier complexity.
We thus propose to monitor how the classifier param-

eters deviate from their initial, unbackdoored values once
a backdoor is added. To this end, we consider the initial
weights w0 = w?(β = 0) and wβ = w?(β) for β > 0,
and measure two quantities,

ρ = ‖wβ‖ ∈ [0,∞), and ν =
1

2

(
1− w>0 wβ

‖w0‖‖wβ‖

)
∈ [0, 1] .

(5)
The first measure, ρ, quantifies the change of the weights
while β increases. This quantity is equivalent to the regu-
larization term used for learning. The second ones, ν, quan-
tifies the change in orientation of the classifier. In a nut-
shell, we compute the angle between the two vectors and
rescale the angle to be in the interval of [0, 1]. Both metrics
are defined to grow as β → 1, in other words as the back-
doored classifier deviates more and more from the original
classifier. Consequently, in the empirical parameter devia-
tion plots in Section B.1, we plot ρ on the y-axis and ν on
the x-axis. Put differently, we report the function ρ(ν) as β
varies from 0 to 1, to show how the classifier parameters are
affected by the backdoor poisoning process.

B.1. Experiments

We investigate the two measures proposed in Section B,
ρ and ν. The former, ρ, monitors the change of the weights,
for example whether they increase or decrease. The latter,
ν, measures the change in orientation or angle of the clas-
sifier. We plot both measures with different regularization
parameters in Figure 12 for MNIST and in Figure 13 for
CIFAR10. The fraction of poisoning points is p = 0.1, or
10%, for both MNIST (top) and CIFAR10 (bottom).

On linear classifiers, ρ(w) increases during the back-
door learning process. This is equivalent to an increase of
the weights’ values, suggesting that the classifiers become
more complex while learning the backdoor. However, when
investigating the RBF SVM, the results are slightly differ-
ent. Here, when the regularization term increases, there

is no need for the classifier to increase its weights signif-
icantly. We conclude that less regularized classifiers need
to increase their weights and thus complexity to learn the
backdoor. Conversely, when the flexibility of the classifier
increases then it can learn the backdoor easier without sig-
nificantly altering its complexity.

C. Explaining Backdoor Predictions
In the following we propose a first attempt to interpret

the decision function of the poisoned classifiers. In par-
ticular, given a sample x we compute the gradient of the
classifier’s decision function with respect to x. We use a
SVM with regularization λ = 1e−02 for MNIST 6-0 and
CIFAR10 airplane vs frog, and we report the results in Fig-
ure 14.

For MNIST we consider a digit 7 with the trigger (left)
and we show the gradient of the clean classifier’s decision
function. We report the outcome of the gradient from the
clean (middle) and poisoned (right) classifiers for the corre-
sponding input. We remark that since we train a linear clas-
sifier on the input space, then the derivative coincide with
the classifier’s weights. Intriguingly, the classifier’s weights
increased their magnitude and now has high values on the
bottom right corner, where the trigger is located.

From CIFAR10, we show a poisoned airplane (left). We
report the gradient mask obtained by considering the maxi-
mum value for each channel, both for the clean (middle) and
backdoored (right) classifier. Also in this case, the back-
doored model shows higher values in the bottom right re-
gion, corresponding to the trigger location. This means that
the analyzed classifiers assigns high importance to the trig-
ger in order to discriminate the class of the input points.
Summarizing, the plots in Figure 14 confirm our results
from Section B.1 regarding the increase in complexity due
to the backdoor.

Figure 15 shows the corresponding top 7 most influen-
tial samples in the poisoned training set. We plot on the
left the poisoned input sample (with a red border) and show
next to it the points which yield the highest influence func-
tion values. For both MNIST (top) and CIFAR10 (bottom),
among the most influential training points are the ones with
the trigger.
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Figure 4: Backdoor learning curves for different classifiers trained on MNIST 7-1. Darker lines represent a higher fraction
of poisoning samples p injected into the training set. We report with solid (dashed) lines the loss on the backdoored (clean)
test dataset.
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Figure 5: Backdoor learning curves for different classifiers trained on MNIST 3-0. See the caption of Figure 4 for further
details.
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Figure 6: Backdoor learning curves for different classifiers trained on MNIST 5-2. See the caption of Figure 4 for further
details.
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Figure 7: Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs frog. See the caption of Figure 4
for further details.
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Figure 8: Backdoor learning curves for different classifiers trained on CIFAR10 bird vs dog. See the caption of Figure 4 for
further details.
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Figure 9: Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs truck. See the caption of Figure 4
for further details.



Figure 10: Backdoor slope θ vs backdoor (BK) effectiveness (blue) and clean accuracy (red) on MNIST 7 vs 1 (top), 3 vs 0
(middle) and 5 vs 2 (bottom). We have represented with a triangle (plus sign) the performance obtained with γ0 on the clean
(backdoored) dataset, and with a inverted triangle (cross), the ones obtained with γ1.



Figure 11: Backdoor slope vs backdoor (BK) effectiveness on CIFAR10 airplane vs frog (top), airplane vs truck (middle)
and bird vs dog (bottom). See the caption of Figure 10 for further details.
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Figure 12: Backdoor weight deviation for different classifiers trained on MNIST 7 vs 1 (top), 3 vs 0 (middle) and 5 vs 2
(bottom). We specify regularization parameter λ and backdoor (BK) accuracy for each setting in the legend of each plot.
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Figure 13: Backdoor weight deviation for different classifiers trained on CIFAR10 airplane vs frog (top), airplane vs truck
(middle), and bird vs dog (bottom). We specify regularization parameter λ and backdoor (BK) accuracy for each setting in
the legend of each plot.

-0.2

0.0

0.2

0.5

0.8

-2.0

0.0

2.0

4.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Figure 14: The first half of the plots consider the case of MNIST 7-1, and the second half is for CIFAR10 airplane vs frog.
For each block we have: the poisoned test sample under consideration (left); the gradient of the untainted SVM decision’s
boundary with respect to the input (middle); the gradient of the poisoned SVM decision’s boundary with respect to the input
(right). For CIFAR10 we consider the maximum gradient of each pixel among the 3 channels.
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Figure 15: We report the top 7 most influent samples from the poisoned SVM on the prediction of the samples with the red
border.


