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1. Details on Training Dataset
In this work, we present detailed evaluations on bench-

mark datasets such as CIFAR-10 [8], ImageNet-100 (a 100-
class subset of ImageNet [4, 11]) and the German Traffic
Sign Recognition Benchmark (GTSRB) [6]. The CIFAR-
10 dataset consists of 32×32 RGB images of ten distinct
classes, and has become a benchmark dataset for the analy-
ses and evaluation of adversarial attacks and defenses. Im-
ageNet [4] is a 1000-class dataset consisting of 224×224
colour images, and is known to be particularly challeng-
ing for the setting of robust classification. In this work,
we focus on a 100-class random subset [11], to alleviate
computational space and time requirements. The GTSRB
dataset consists of road signage boards, and is thus im-
mensely important towards the practical deployment of ro-
bust networks in autonomous navigation vehicles. Follow-
ing Rao et al. [10], we use a subset of GTSRB, consisting
of 32×32 colour images, with 35,600 training images and
1,273 test images across 43 classes. We split each of the
training datasets into class-balanced training and validation
sets. We use a 2% validation split for CIFAR-10 and GT-
SRB, and 20% split for ImageNet-100.

2. Training Details
We train ResNet-20 [5] models from scratch using Adam

[7] with initial learning rate of 0.01 and weight decay
0.0001 for 125 epochs with batch size 64. We reduce the
learning rate by a factor of 10, three times during the train-
ing process. On CIFAR-10, we train with a patch size of
5×5 for the patch defense and with k = 20 for the `0 de-
fense. On GTSRB, we we train with a patch size of 7×7.
On ImageNet-100, we train with a patch size covering 3%
of the image. For CIFAR-10 training, we set α (Eq.3 of the
main paper) to 0.2 and λ (Eq.2 of the main paper) to 1. We
multiply the value of λ with 9 three times during training.
In the FRC-GLA defense, we use the BPFC regularizer [1]
with p = 4 and λ = 1 along with a multiplicative factor of
5. We use early stopping on the validation split based on ro-

*Equal contribution.
Correspondence to: Sravanti Addepalli, sravantia@iisc.ac.in

Table 1. ImageNet-100: Performance (%) of the proposed meth-
ods FCR-RL, FCR-GL and FCR-GLA compared to baselines,
against PGD 30-step all location patch attack (stride=4) of differ-
ent sizes (1%, 2% and 3%) with 10 random restarts (RR).
FP : Forward pass, F+BP: Forward and Backward passes

Method # steps
location

# steps
attack

Clean
Acc

PGD-30 10RR
1% 2% 3%

AT-ROA (DOA) [12] 1444 FP 20 71.8 14.7 10.5 7.6
AT-FullLO [10] 80 FP 20 75.1 18.4 15.8 12.0
FCR-RL (Ours) 0 FP 0 75.5 13.9 9.6 5.8
FCR-GL (Ours) 0.5 F+BP 0 75.2 18.8 15.7 11.6
FCR-GLA (Ours) 0.5 F+BP 0.5 74.9 23.1 19.8 17.1

Table 2. GTSRB Stop Sign dataset: Performance (%) of the
proposed methods FCR-RL, FCR-GL and FCR-GLA compared
to baselines, against Stop Sign attack [12] with multiple random
restarts (RR). FP : Forward pass, F+BP: Forward and Backward
passes

Method # steps
location

# steps
attack

Clean
Acc 1 RR 10 RR 100 RR

AT-ROA (DOA) [12] 676 FP 30 94.3 85.5 75.3 74.1
AT-FullLO [10] 200 FP 50 93.2 82.9 68.8 68.0
FCR-RL (Ours) 0 0 94.7 81.3 71.9 69.5
FCR-GL (Ours) 0.5 F+BP 0 93.9 84.1 76.2 75.8
FCR-GLA (Ours) 0.5 F+BP 0.5 92.6 85.0 79.3 78.6

Table 3. CIFAR-10, `0 threat model: Performance (%) of the
proposed methods FCR-RL, FCR-GL and FCR-GLA trained us-
ing `0 norm bound perturbations, against l0-RS attack [2] with
25000 queries and `0 perturbation bound k. The proposed method
achieves robustness comparable to the multi-step defense PGD0-
AT [3] at around 6× lower computational cost.

Method # steps
attack

Clean
Acc

l0-RS (25k) Time/
epoch (s)

No. of
epochs

Time
(hrs)k=10 k=15

PGD0-AT [3] 40 87.1 43.2 32.8 390 100 10.8
FCR-RL (Ours) 0 88.6 31.1 20.7 35 125 1.2
FCR-GL (Ours) 0 86.5 36.3 24.9 43 125 1.5
FCR-GLA (Ours) 0.5 85.2 38.7 27.0 50 125 1.7

bust accuracy against the ROA PGD-150 attack [12] for the
patch defenses and `0-RS (1k) attack [2] for the `0 defenses
in the last 25 epochs.



3. Details on Results

To ensure the absence of gradient masking [9], we evalu-
ate the defenses with a black-box gradient-free patch attack.
The main candidates for such an attack are Texture-based
Patch Attack (TPA) [13], which makes use of reinforcement
learning to select the patch location and texture, and Patch-
RS [2], which uses a framework based on score-based ran-
dom search to generate the patch attack. We run these two
attacks on our FCR-GLA model on ImageNet-100 with the
patch covering 3% of the image. The maximum number
of queries allowed is 10,000. The robust accuracy obtained
with TPA is 59%, while the accuracy obtained with Patch-
RS is 36%. Since Patch-RS is a stronger and more query-
efficient attack, we use this to test black-box robustness of
our defenses in Tables 1 and 2 of the main paper. From Ta-
ble 1 in the supplementary, the all-location PGD-30 attack
yields the strongest evaluation of robustness against patch
attacks on ImageNet-100 with a robust accuracy of 17%.
Thus, we report numbers against the all-location PGD at-
tack in Table 2 of the main paper and Tables 1 and 2 in the
supplementary.

All the experiments for measuring computational com-
plexity in Table 1 of the main paper and Table 3 of the sup-
plementary are done on a single Nvidia GeForce GTX 1080
Ti GPU card.
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