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Abstract

The vulnerability of Deep Neural Networks to adversar-
ial attacks poses a serious threat in critical applications
such as autonomous navigation systems and surveillance
systems. While most of the existing research is focused on
defending attacks within the `∞ and `2 threat models, real-
world attacks are often sparse, as they need to be physically
realizable. In this work, we aim to improve the efficiency of
defenses against sparse adversaries such as patch-attacks
and `0 norm bound attacks. We achieve this by enforcing
the network to learn consistent feature representations be-
tween a clean image and a corresponding randomly aug-
mented image that is specific to the considered threat model.
The proposed method achieves robustness at a significant
speed-up when compared to existing methods. We achieve
a further boost in robustness by using single-step gradients
for attack generation and location optimization.

1. Introduction

Deep Networks are being widely adopted in many secu-
rity critical applications such as self-driving cars and face-
recognition systems. However, they are susceptible to ad-
versarial attacks [41], which are crafted perturbations to
the input image [17] that can lead models to flip their pre-
dictions to completely unrelated classes, resulting in po-
tentially dangerous outcomes [38, 16]. This has spurred
interest in building adversarial attacks [8, 3, 42] to ex-
pose the vulnerabilities of models, and adversarial defenses
[30, 50, 40] to improve their robustness. To formalize re-
search in the area of adversarial attacks and defenses, an at-
tack is typically confined within a well-defined threat model
[7, 18], such as an `p norm bound of radius ε, that ensures
imperceptibility. The most common threat models in litera-
ture are the `∞ and `2 norm bounds, which tend to produce
low magnitude perturbations on a large number of pixels.

While a systematic study with these settings has led to
significant progress over the past few years [18, 30, 50, 20],
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real-world attacks differ in a few aspects. Firstly, an at-
tacker is not restricted to generate attacks under a single
threat model, which makes it important to build defenses
that can generalize well to unseen attacks as well. Secondly,
the attack needs to be physically realizable. Sparse attacks
such as adversarial patches [5, 9, 48], and those constrained
within the `0 norm bound [35, 32, 9] are easier to imple-
ment in the real-world, since it is easier to corrupt a few
pixels with large perturbations, when compared to mildly
perturbing a large number of pixels, as is the case with `∞
and `2 norm bound attacks. In a patch attack, the adversary
is allowed to perturb a patch of a fixed shape and size (such
as a 5×5 square patch) in the given image. The patch size is
selected to be roughly 1% to 3% of the image size [45, 37],
so that the perturbation is not conspicuous.

In this work, we propose efficient adversarial defenses to
achieve robustness against sparse attacks by enforcing con-
sistent feature representations between a clean image, and
an augmented image that is specific to the defined threat
model. While existing empirical defenses [45, 37] typically
use multi-step adversarial attacks (10 to 50 steps) during
training, we demonstrate robustness to sparse attacks with-
out the use of adversarial samples during training. Further,
we show that with an overhead of one additional gradient
computation, we can find a better location for the random
perturbation, thereby boosting the robustness significantly.
Finally, by using the computed gradients to also generate
single-step attacks, we obtain improved results when com-
pared to existing multi-step adversarial training methods.

2. Contributions
Our contributions have been listed below:
• FCR-RL: We propose Feature Consistency Regular-

izer (FCR) based training that uses random patch aug-
mentations at random locations (RL) to achieve robust-
ness to patch attacks, at a computational cost that is
comparable to standard training.

• FCR-GL: We further propose to use single-step gra-
dients for location optimization in alternate training it-
erations to improve the strength of the attack, leading
to significantly better robustness.



• FCR-GLA: We propose to use the gradients computed
in the alternate training iterations for attack generation
as well, to achieve improved results compared to exist-
ing multi-step adversarial training methods at a signif-
icantly lower computational cost. We demonstrate im-
proved results on the CIFAR-10 [26], ImageNet-100
[13] and GTSRB [24] datasets.

• The proposed method generalizes better that existing
empirical and certified defenses to unseen sparse at-
tacks such as multi-patch attacks and `0 norm bound
attacks, and achieves a large boost in robustness when
combined with the state-of-the-art certified patch de-
fense BagCert [31].

• We extend the proposed method to the `0 norm threat
model, where we achieve results comparable to adver-
sarial training methods at significantly lesser compute.

3. Related Works
Following the discovery of adversarial examples by

Szegedy et al. [41], a broad range of defenses [18, 30, 50]
have been proposed to improve the worst-case performance
of deep networks. Amongst the earliest defenses specific to
the `∞ threat model was Fast Gradient Sign Method based
adversarial training (FGSM-AT) [18], wherein the training
set is augmented with adversaries generated using single-
step optimization. This was later found to be susceptible
to gradient masking [34], and was thus not robust against
multi-step attacks. This was followed by methods that at-
tempted to use input transformations [21] or other gradient-
obfuscation based training methods [6, 29, 15, 47, 39] to
build robust models. However, they were broken in the
work by Athalye et al. [3], where the authors proposed
adaptive attacks to circumvent such defenses. Madry et al.
[30] and Zhang et al. [50] proposed robust training tech-
niques using strong, multi-step adversaries, and have with-
stood the test of time against more sophisticated attacks
[11, 40]. However, due to their large computational over-
head, efficient training techniques have been proposed that
either eliminate the generation of adversaries entirely [1], or
make use of only single-step attacks [44, 40]. While such
defenses are largely developed for the setting of `2 or `∞
based threat models, in this work we seek to build efficient
defenses against physically realisable adversaries, as is sub-
sequently expounded.

Patch Attacks: Brown et al. [5] first demonstrated the
vulnerability of image classification models to adversarial
patch attacks, wherein carefully crafted universal adversar-
ial stickers could be printed and placed on any scene to in-
duce misclassification. Subsequently, image-specific patch
attacks such as LaVAN [25] were also proposed. While
physical adversarial attacks are often modeled as adversar-
ial patches [28, 36, 43], a related variant, which is local-
ized adversarial perturbations of different shapes, have been

shown to fool safety-critical systems like Face Recognition
Systems [38] and Road Sign Classifiers [16]. Several black-
box attacks have been developed for patch attacks, includ-
ing Texture-based Patch Attack (TPA) [48], which uses a
reinforcement learning agent to optimize the patch location
and texture, and Patch-RS [9], which is based on random
search to efficiently generate the patch attack.

Defenses against Patch Attacks: Input pre-processing
based defenses such as Digital Watermarking (DW) [22]
and Local Gradient Smoothing (LGS) [33] were first pro-
posed to detect and mask out the adversarial patch in the
image before passing it to the classifier. However, such de-
fenses are vulnerable to adaptive adversaries such as BPDA
[3]. Adversarial training [30] has been adapted to build ro-
bust defenses against patch-attacks [37, 45]. Although these
models show significantly improved robustness to patch at-
tacks, they are computationally expensive to train.

Chiang et al. [49] proposed the first certified de-
fense against adversarial patch-attacks using Interval Bound
Propagation (IBP) [19]. Later, Clipped BagNet (CBN) [51],
De-randomized Smoothing (DS) [27], and PatchGuard [46]
were introduced to achieve significantly higher certified ac-
curacy on CIFAR-10 and ImageNet. The large inference
time incurred by the DS based methods limits their prac-
ticality. BagCert [31] uses a modification of the BagNet
[4] architecture to limit the receptive field of the network.
This coupled with their certification framework and margin
based training loss yields high certified robustness and ef-
ficient inference. While these defenses improve robustness
within the specified threat model, we show that they do not
generalize well to other unseen sparse attacks.
`0-attacks and defenses: Croce et al. [10] introduced a

score-based `0-norm attack called CornerSearch (CS), and
an `0-norm variant of the PGD attack PGD0, which were
stronger than prior attacks such as JSMA [35] and Sparse-
Fool [32]. Using this, the authors propose an adversar-
ial training method to improve robustness against `0 norm
bound attacks. Croce et al. [9] propose a black-box frame-
work for score-based sparse attacks using random search.
Their `0-RS attack achieves state-of-the-art success rate and
query efficiency in the `0 threat model.

4. Notation
In this work, we aim to improve the adversarial robust-

ness of Deep Neural Network based image classifiers. We
denote a data sample from a distributionD as (xi, yi) where
xi denotes the input image and yi denotes its correspond-
ing ground truth label. We denote a Deep Neural Net-
work based classifier using fθ whose weights are denoted
by θ ∈ Θ. The network takes an image xi as input and
outputs the pre-softmax output f(xi). We denote an aug-
mentation that is specific to a threat model T as x̃i. We
denote the Cross-Entropy loss by LCE.
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Figure 1. Schematic diagram of the proposed Feature Consistency
Regularizer (FCR) based training to defend against patch attacks

5. Proposed Method
5.1. Adversarial Training on Sparse Threat Models

Adversarial Training is the most widely used defense
strategy for obtaining models that are robust to adversar-
ial attacks in a well-defined threat model. Projected Gradi-
ent Descent based Adversarial Training (PGD-AT) [30] is
one of the earliest and most successful defenses that works
well on a wide range of threat models. This attempts to
solve the minimax optimization problem of firstly maximiz-
ing the Cross-Entropy loss for generating strong adversar-
ial attacks, followed by minimizing the worst-case loss for
training. The loss formulation of PGD-AT is shown below:

min
θ

E
(x,y)∼D

max
ε∈T

LCE (fθ(x+ ε), y) (1)

While this loss formulation achieves the best results across
various threat models, the inner maximization step requires
the use of multiple iterations, leading to significantly higher
computational cost for training. This makes it hard to scale
to large datasets which are common in real-world appli-
cations. Further, the complexity of attack generation de-
pends on the threat model considered. While attacks con-
strained within the `2 and `∞ norm bounds typically have
lower magnitude perturbations per pixel, and therefore can
achieve good attack strength using lesser optimization steps
(10 steps) [30, 50], sparse threat models such as patch and
`0 norm produce larger magnitude perturbations per pixel,
and hence require more steps (20-50 steps) [37, 45, 10] for
the generation of strong attacks. This increases the compu-
tational cost of sparse adversarial training further. The gen-
eration of adversaries with lesser number of optimization
steps leads to the phenomenon of gradient-masking [34]
where the network learns to obfuscate the gradients around
the data samples to prevent the generation of strong attacks,
leading to catastrophic failure of adversarial training [44].

5.2. Feature Consistency Regularizer

FCR-RL (Random Location): We propose to replace
the inner optimization step in Eq.1 with an expectation over
random augmentations and show using extensive experi-

ments that smoothing the loss surface over random direc-
tions can indeed serve as a promising alternative to the min-
imization of classification loss over strong multi-step adver-
saries in sparse threat models. The optimization problem
used for training models using the proposed Feature Con-
sistency Regularizer (FCR) is shown in Eq.2 and 3.

min
θ

E
(xi,yi)∼D

E
δi∈T

LCE+λ·
∥∥fθ(xbi )− fθ(xi + δi)

∥∥2
2

(2)

LCE = α·LCE(fθ(xi), yi)+(1−α)·LCE(fθ(x
b
i ), yi) (3)

For every input image xi, we generate a randomly aug-
mented image x̃i = xi + δi by adding a random patch of a
fixed size at a random location. The random patch is con-
structed by sampling the perturbation for every pixel from
the distribution U(0, 255) and clipping the obtained value
to the range [0, 255]. We further generate a correspond-
ing Cutout [14] based augmentation xbi by blanking out the
pixel values corresponding to the location of the random
patch, or setting them to 0 as shown in Fig.1. As shown in
Eq.3, we minimize a convex combination of cross-entropy
loss on xi and xbi with a coefficient α. We use the squared
`2 norm based regularizer [1] to impose local smoothness
between the pre-softmax outputs of the perturbed image x̃i
and its Cutout augmentation xbi , in addition to the minimiza-
tion of cross-entropy loss.

FCR-GL (Gradient based Location): We further ex-
plore the use of single-step gradients for location optimiza-
tion of the random attack in alternate training iterations.
This is done by first adding random noise ∆i of magnitude
8/255 sampled from a Bernoulli distribution to every pixel,
and further computing gradient of the cross-entropy loss of
the image xi+∆i. We randomly select one location among
the top-5 average gradient locations, where the average is
found across a local p × p patch, that corresponds to the
considered threat model.

FCR-GLA (Gradient based Location and attack): In
this method, we utilize single-step gradients for both loca-
tion optimization and attack generation in alternate training
iterations. We generate a random patch perturbation as ob-
tained earlier, and multiply this with the sign of gradients
at the patch location before adding it to the image. There-
fore the perturbation utilizes very weak support from the
gradients. The use of random location and attack in alter-
nate training iterations prevents the issue of gradient mask-
ing that is common with single-step training methods [34].
We additionally use the BPFC regularizer proposed by Ad-
depalli et al. [1] to improve the efficacy of single-step gra-
dients by enforcing local smoothness of the loss surface.

6. Experiments and Results
We present detailed evaluations on benchmark datasets

such as CIFAR-10 [26], ImageNet-100 (a 100-class subset



Table 1. Generalization to unseen attacks: Performance (%) of the proposed methods FCR-RL, FCR-GL and FCR-GLA compared to
baselines, against patch attacks, `0 and `1 norm bound attacks on the CIFAR-10 dataset. All defenses are trained to be robust to a single
square patch attack of size 5 × 5. We evaluate these defenses against various attacks that are unseen during training, such as the square
multi-patch attack, rectangular single-patch attack, and `0, `1 norm bound attacks. Patch-RS [9] with 10000 queries is used for evaluating
robustness to patch attacks. Square attack [2, 12] with 1000 queries and l0-RS [9] attack with 5000 queries are used for evaluation of `1
and `0 attacks respectively. The first two partitions use ResNet-20 [23] architecture and the third partition uses BagNet [4] architecture.

Method Clean
Acc

Patch attack (Total budget ∼25 pixels)
`1

(ε = 5)
`0

(ε = 7)

Avg (unseen
threat

models)

No. of
epochs

Time /
epoch
(sec)

Total
time
(hrs)

1 square
5x5

2 squares
4x4, 3x3

3 squares
{3x3}ˆ3

4 squares
{3x3, 2x2}ˆ2

5 squares
3x3, {2x2}ˆ4

6 squares
{2x2}ˆ6

1 rectangle
3x8/ 2x12/ 1x25

DS (Certified 56.2%) [27] 83.9 70.5 59.2 50.5 43.2 41.9 39.7 40.2 45.1 58.5 49.7 350 42 4.1
Mask-DS (Certified 58.1%) [46] 84.5 73.1 60.5 51.3 44.0 42.6 40.4 40.7 43.0 59.1 49.5 350 42 4.1

AT-ROA [45] 83.6 41.3 35.1 32.2 30.6 29.3 28.2 29.4 61.9 65.3 52.6 120 370 12.3
AT-FullLO [37] 88.7 40.8 36.3 34.1 31.5 29.7 29.1 28.0 63.2 62.4 52.3 200 400 22.2
FCR-RL (Ours) 87.9 40.2 35.8 33.2 30.4 29.5 28.6 26.3 65.8 61.1 52.5 125 30 1.0
FCR-GL (Ours) 84.9 50.1 44.4 41.7 40.5 39.5 39.1 33.0 69.6 67.4 58.9 125 38 1.3
FCR-GLA (Ours) 85.3 56.4 50.4 46.9 44.9 44.1 43.4 40.4 70.1 69.5 61.5 125 45 1.5

BagCert (Certified 60%) [31] 85.0 76.3 46.7 42.6 37.8 35.3 34.6 44.2 55.5 49.1 48.2 350 75 7.2
FCR-GLA (Ours) 84.4 64.8 58.5 53.1 49.4 47.5 44.1 45.3 74.1 62.7 62.1 200 70 3.9
FCR-GLA (Ours+BagCert) 84.1 75.2 61.4 54.2 47.9 43.6 42.8 44.1 65.3 56.5 56.9 350 90 8.7

Table 2. CIFAR-10: Performance (%) of the proposed methods
FCR-RL, FCR-GL and FCR-GLA against PGD 150-step all loca-
tion attack with multiple random restarts (RR) and Patch-RS (P-
RS) attack [9] with 10000 queries (Q). FP: Forward pass, F+BP:
Forward and Backward passes

Method # steps
location

# steps
attack

Clean
Acc

PGD
10 RR

PGD
100 RR

P-RS
10k Q

AT-ROA (DOA) [45] 784 FP 30 83.6 30.2 29.8 41.3
AT-FullLO [37] 200 FP 50 88.7 33.4 32.9 40.8
FCR-RL (Ours) 0 FP 0 87.9 30.6 26.1 40.2
FCR-GL (Ours) 0.5 F+BP 0 84.9 38.8 34.3 50.1
FCR-GLA (Ours) 0.5 F+BP 0.5 85.3 42.8 41.1 56.4

of ImageNet [13, 40]) and the German Traffic Sign Recog-
nition Benchmark (GTSRB) [24]. We include details on
datasets and training in the Supplementary.

Results: We present evaluations of the proposed ap-
proach along with existing adversarial training methods AT-
ROA [45] and AT-FullLO [37] against patch attacks on the
CIFAR-10 dataset in Table-2. The results on ImageNet-
100 and GTSRB datasets are presented in Tables-1 and 2 of
the Supplementary. We evaluate all defenses against an all-
location PGD 150-step attack with multiple random restarts
(10-100 RR) which is much stronger and exhaustive when
compared to evaluations in prior work [45, 37]. We addi-
tionally evaluate against the gradient-free attack Patch-RS
[9] using 10000 queries on the CIFAR-10 dataset, to en-
sure the absence of gradient masking. FCR-RL achieves
robustness to a significant extent across all three datasets at
a budget comparable to standard training, and achieves re-
sults comparable to the multi-step (30-50) adversarial train-
ing methods on the CIFAR-10 and the GTSRB datasets.
We further note that by using merely one additional back-
propagation in alternate training iterations for location op-
timization, we achieve a significant boost in robustness
across all three datasets in FCR-GL. Reusing the same gra-
dients for attack generation as well leads to a further boost
in robustness across all three datasets. Overall, we achieve
gains of 8.2%, 5.1% and 4.5% on CIFAR-10, ImageNet-

100 and GTSRB datasets respectively, when compared to
the multi-step adversarial training approaches [37, 45].

We compare performance of the proposed patch defense
with existing empirical and certified defenses against at-
tacks constrained within various threat models in Table-1.
While some of the certified defenses [27, 46, 31] achieve
better robustness against the main threat model considered
(5×5 square patches), they are computationally more ex-
pensive either during training [31] or inference [27, 46].
Further, our proposed defenses generalize very well to other
unseen threat models such as multi-patch attacks, rectan-
gular attacks and attacks within the `0 and `1 norm bound,
while certified defenses are specific to the threat model con-
sidered. We obtain the highest average accuracy against
unseen threat models, which is computed as an equally
weighted average of unseen patch attacks, `0 and `1 norm
bound attacks. By using the BagNet architecture [4, 31]
with the proposed approach, we achieve significant gains in
results and obtain additional gains by combining the pro-
posed approach with the BagCert defense [31].

We use the proposed algorithm to defend against `0 norm
bound attacks and obtain results comparable to the multi-
step adversarial training method PGD0-AT [10] at signifi-
cantly lower compute (Table-3 of the Supplementary).

7. Conclusions

We propose Feature Consistency Regularizer (FCR)
based training to achieve robustness against Patch Attacks
without the use of expensive multi-step adversarial attacks
during training. The proposed defense achieves improved
results when compared to existing multi-step defenses on
the main threat model used for training, and generalizes
much better to unseen threat models when compared to cer-
tified patch defenses, using significantly lower compute dur-
ing training and inference. We extend the proposed frame-
work to defend against other sparse threat models such as
the `0 norm bound as well.
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