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A1. Oracle-Invariant Attacks

Square Attack: The strongest Oracle-Invariant examples
are generated using the Square attack [2]. As shown in
Fig.A1, these are Oracle-Invariant since this is a query-
based attack and does not use gradients from any model for
attack generation. However this attack uses 5000 queries,
and is a computationally expensive attack. Hence this at-
tack cannot be used for adversarial training, although it is
one of the best attacks for evaluations. We note that reduc-
ing the number of queries makes it computationally effi-
cient, however it also reduces the effectiveness of the attack
significantly.
PGD based Attacks: While the most efficient attack that is
widely used for adversarial training is the PGD 10-step at-
tack, it cannot be used for the generation of Oracle-Invariant
samples as adversarially trained models have perceptually
aligned gradients, and tend to produce Oracle-Sensitive
samples. Therefore, we explore some variants of the PGD
attack to make the generated perturbations Oracle-Invariant.
We denote the Cross-Entropy loss on a data sample x with
ground truth label y using LCE(x, y). We explore the addi-
tion of regularizers to the Cross-Entropy loss weighted by
a factor of λX in each case. The value of λX is chosen
as the minimum value which transforms the PGD attacks
from Oracle-Sensitive to Oracle-Invariant. This results in
the strongest possible Oracle-Invariant attacks.
Discriminator based PGD Attack: We train a discrim-
inator to distinguish between Oracle-Invariant and Oracle-
Sensitive adversarial examples, and further maximize the
below loss for the generation of Oracle-Invariant attacks:

LCE(x, y)− λDisc · LBCE(x̂,OI) (A1)

Here LBCE(x̂,OI) is the Binary Cross-Entropy loss of
the adversarial example x̂ w.r.t. the label corresponding to
an Oracle-Invariant (OI) attack. We train the discriminator
to distinguish between two input distributions; the first cor-
responding to images concatenated channel-wise with their
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Figure A1. Square attack: Adversarially attacked images (b, c,
d, f) and the corresponding perturbations (e, g) for various `∞
bounds generated using the gradient-free random search based at-
tack Square [2]. The clean image is shown in (a). Attacks are gen-
erated from a model trained using the proposed Oracle-Aligned
Adversarial Training (OA-AT) algorithm on CIFAR-10. Predic-
tion of the same model is printed above each image.

respective Oracle-Sensitive perturbations, and a second dis-
tribution where perturbations are shuffled across images in
the batch. This ensures that the discriminator relies on the
spatial correlation between the image and its corresponding
perturbation for the classification task, rather than the prop-
erties of the perturbation itself. The attack in Eq.A1 there-
fore attempts to break the most salient property of Oracle-
Sensitive attacks, which is the spatial correlation between
an image and its perturbation.
LPIPS based PGD Attack: We propose to use the
Learned Perceptual Image Patch Similarity (LPIPS) mea-
sure for the generation of Oracle-Sensitive attacks, as it is
known to match well with perceptual similarity [24, 13].
As shown in Fig.A2, while the standard AlexNet model
that is used in prior work [13] fails to distinguish between
Oracle-Invariant and Oracle-Sensitive samples, an adversar-
ially trained model is able to distinguish between the two
types of attacks effectively. In this plot, we consider at-
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Figure A2. LPIPS distance between clean and adversarially per-
turbed images. Attacks generated from PGD-AT [14, 15] model
(Oracle-Sensitive) and Normally Trained model (Oracle-Invariant)
are considered. (a) PGD-AT ResNet-18 model is used for compu-
tation of LPIPS distance (b) Normally Trained AlexNet model is
used for computation of LPIPS distance. PGD-AT model based
LPIPS distance is useful to distinguish between Oracle-Sensitive
and Oracle-Invariant attacks.

tacks generated from a PGD-AT [14, 15] model (Fig.1(c-e)
of the main paper) as Oracle-Sensitive attacks, and attacks
generated from a Normally Trained model (Fig.1(h) of the
main paper) as Oracle-Invariant attacks. We therefore pro-
pose to minimize the LPIPS distance between the natural
and perturbed images, in addition to the maximization of
Cross-Entropy loss for attack generation as shown below:

LCE(x, y)− λLPIPS · LPIPS(x, x̂) (A2)

We choose λLPIPS as the minimum value that transforms
the PGD attack from Oracle-Sensitive to Oracle-Invariant
(OI), to generate strong OI attacks. This is further fine-
tuned during training to achieve the optimal robustness-
accuracy trade-off. As shown in Fig.A3, setting λLPIPS to
1 changes adversarial examples from Oracle-Sensitive to
Oracle-Invariant, as they look similar to the correspond-
ing original images shown in Fig.A3(a). This can be ob-
served more distinctly at perturbation bounds of 24/255 and
32/255. The perturbations in Fig.A3(c) are smooth, while
those in (e) and (g) are not. This shows that the addition of
the LPIPS term helps in making the perturbations Oracle-
Invariant. Very large coefficients of the LPIPS term make
the attack weak as can be seen in Fig.A3(f, j, m) where the
model prediction is same as the true label. We therefore
set the value of λLPIPS to 1 to obtain strong Oracle-Invariant
attacks.

As shown in Table-A1, while we obtain the best results
using the LPIPS based PGD attack for training (E1), the
use of discriminator based PGD attack (E6) also results in a
better robustness-accuracy trade-off when compared to E2,
where there is no explicit regularizer to ensure the genera-
tion of Oracle-Invariant attacks.
Evaluation of the proposed defense against Oracle-
Invariant Attacks: We compare the performance of the
proposed defense OA-AT with the strongest baseline AWP

[22] against the two proposed Oracle-Invariant attacks,
LPIPS based attack and Discriminator based attack in
Fig.A4 (a) and (b) respectively. We vary the coefficient
of the regularizers used in the generation of attacks, λDisc
(Eq.A1) and λLPIPS (Eq.A2) in each of the plots. As we
increase the coefficient, the attack transforms from Oracle-
Sensitive to Oracle-Invariant. The proposed method (OA-
AT) achieves improved accuracy when compared to the
AWP [22] baseline.

A2. Details on the Datasets used

We evaluate the proposed approach on the CIFAR-10
and CIFAR-100 [12] datasets. The two datasets consist
of RGB images of spatial dimension 32×32, and contain
10 and 100 distinct classes respectively. CIFAR-10 is the
most widely used benchmark dataset to perform a compara-
tive analysis across different adversarial defense and attack
methods. CIFAR-100 is a challenging dataset to achieve
adversarial robustness given the large number of diverse
classes that are interrelated. Each of these datasets consists
of 50,000 training images and 10,000 test images. We split
the original training set to create a validation set of 1,000
images in CIFAR-10 and 2,500 images in CIFAR-100. We
ensure that the validation split is balanced equally across all
classes, and use the remaining images for training. To en-
sure a fair comparison, we use the same split for training the
proposed defense as well as other baseline approaches. For
both datasets, we consider the `∞ threat model of radius
8/255 to be representative of imperceptible perturbations,
that is, the Oracle label does not change within this set. Fur-
ther, we consider the `∞ threat model of radius 16/255 to
investigate robustness within moderate magnitude perturba-
tion bounds.

A3. Details on Training

The algorithm for the proposed method as explained in
Sec.4 (main paper) is presented in Algorithm-A1. We use
a varying ε schedule and start training on perturbations of
magnitude ε = 4/255. This results in marginally better per-
formance when compared to ramping up the value of ε from
0 (E8 of Table-A1). For CIFAR-10 training on ResNet-18,
we set the weight of the adversarial loss Ladv in L21 of
Alg.A1 (β parameter of TRADES [23]) to 1.5 for the first
three-quarters of training, and then linearly increase it from
1.5 to 3 in the moderate perturbation regime, where ε is
linearly increased from 12/255 to 16/255. In this moder-
ate perturbation regime, we also linearly increase the coeffi-
cient of the LPIPS distance (Alg.A1, L17) from 0 to 1, and
linearly decrease the α parameter used in the convex com-
bination of softmax prediction (Alg.A1, L14) from 1 to 0.8.
This results in a smooth transition from adversarial training
on imperceptible attacks to attacks with larger perturbation
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Figure A3. Oracle-Invariant adversarial examples generated using the LPIPS based PGD attack in Eq.A2 across various perturbation
bounds. White-box attacks and predictions on the model trained using the proposed OA-AT defense on the CIFAR-10 dataset with ResNet-
18 architecture are shown: (a) Original Unperturbed image, (b, h, k) Adversarial examples generated using the standard PGD 10-step
attack, (d, f, i, j, l, m) LPIPS based PGD attack generated within perturbation bounds of 16/255 (d, f), 24/255 (i, j) and 32/255 (l, m) by
setting the value of λLPIPS to 1 and 2, (c, e, g) Perturbations corresponding to (b), (d) and (f) respectively.
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Figure A4. Comparison of the proposed model with the best base-
line, AWP [22] trained on CIFAR-10 with ResNet-18 architec-
ture, against attacks of varying strength and Oracle sensitivity con-
strained within perturbation bound of ε = 16/255. (a) LPIPS
based regularizer, and (b) Discriminator based regularizer are used
for generating Oracle-Invariant attacks respectively. As the co-
efficient of the regularizer increases, the attack transforms from
Oracle-Sensitive to Oracle-Invariant. The proposed method (OA-
AT) achieves improved accuracy compared to AWP.

bounds. We set the weight decay to 5e-4.
For all our experiments, we use the cosine learning rate

schedule with 0.2 as the maximum learning rate. We use
SGD optimizer with momentum of 0.9, and train for 110
epochs. We compute the LPIPS distance using an exponen-
tial weight averaged model with τ = 0.995. We note from
Table-A1 that the use of weight-averaged model results in
better performance when compared to using the model be-
ing trained for the same (E5). This also leads to more stable
results across reruns.

We utilise AutoAugment [7] for training on CIFAR-100,

and for CIFAR-10 training on large model capacities. We
apply AutoAugment with a probability of 0.5 for CIFAR-
100, and for the CIFAR-10 model trained on ResNet-34.
Since the extent of overfitting is higher for large model ca-
pacities, we use AutoAugment with p = 1 on WideResNet-
34-10. While the use of AutoAugment helps in overcoming
overfitting, it could also negatively impact robust accuracy
due to the drift between the training and test distributions.
We observe a drop in robust accuracy on the CIFAR-10
dataset with the use of AutoAugment (E11, E12 in Table-
A1), while there is a boost in the clean accuracy. On similar
lines, we observe a drop in robust accuracy on the CIFAR-
100 dataset as well, when we increase the probability of ap-
plying AutoAugment from 0.5 (E11 in Table-A1) to 1 (E12
in Table-A1).

To investigate the stability of the proposed approach, we
train a ResNet-18 network multiple times by using differ-
ent random initialization of network parameters. We ob-
serve that the proposed approach is indeed stable, with stan-
dard deviation of 0.167, 0.115, 0.180 and 0.143 for clean
accuracy, GAMA PGD-100 accuracies with ε = 8/255
and 16/255, and accuracy against the Square attack with
ε = 16/255 respectively over three independent training
runs on CIFAR-10. We also observe that the last epoch
is consistently the best performing model for the ResNet-
18 architecture. Nonetheless, we still utilise early stopping
on the validation set using PGD 7-step accuracy for all the
baselines to enable a fair comparison overall.



Table A1. CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 architecture to highlight the importance of various aspects in the
proposed defense OA-AT. Performance (%) against attacks with different ε bounds is reported.

CIFAR-10 CIFAR-100

Method Clean GAMA
(8/255)

GAMA
(16/255)

Square
(16/255) Clean GAMA

(8/255)
GAMA

(16/255)
Square
(16/255)

E1: OAAT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Using Discriminator instead of LPIPS (OI Attack) 80.56 50.75 22.13 31.17 58.84 26.35 10.64 14.82
E7: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E8: Increasing epsilon from the beginning 80.34 50.77 22.57 30.80 60.51 26.34 10.37 14.61
E9: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34
E10: Without AutoAugment 80.24 51.40 22.73 31.16 58.08 25.81 10.40 14.31
E11: With AutoAugment (p=0.5) 81.59 50.40 21.59 30.84 60.27 26.41 10.47 14.60
E12: With AutoAugment (p=1) 81.74 48.15 18.92 28.31 60.19 25.32 9.24 13.78

Table A2. CIFAR-10: Performance (%) of the proposed defense OA-AT against attacks with different ε bounds, when compared to the
following baselines: AWP [22], ExAT [16], TRADES [23], ATES [17], PGD-AT [14] and FAT [1]. AWP [22] is the strongest baseline.
The first partition shows defenses trained on ε = 16/255. Training on large perturbation bounds results in very poor Clean Accuracy. The
second partition consists of baselines tuned to achieve clean accuracy close to 80%. These are sorted by AutoAttack accuracy [6] (AA
8/255). The proposed defense achieves significant gains in accuracy across all attacks.

Method Attack ε
(Training)

Clean FGSM (BB)
(8/255)

R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

TRADES 16/255 75.30 73.26 53.10 35.64 35.12 72.13 44.27 20.24 30.11 70.76 36.99 10.10 18.87
AWP 16/255 71.63 69.71 54.53 40.85 40.55 68.65 47.13 27.06 34.42 67.42 40.89 15.92 24.16
PGD-AT 16/255 64.93 63.65 55.47 46.66 46.21 62.81 51.05 36.95 40.53 61.70 46.40 26.73 32.25
FAT 16/255 75.27 73.44 60.25 47.68 47.34 72.22 53.17 34.31 39.79 70.73 46.88 22.93 29.47
ExAT+AWP 16/255 75.28 73.27 60.02 47.63 47.46 71.81 52.38 34.42 39.62 70.47 45.39 22.61 28.79
ATES 16/255 66.78 65.60 56.79 47.89 47.52 64.64 51.71 37.47 42.07 63.75 47.28 26.50 32.55
ExAT + PGD 16/255 72.04 70.68 59.99 49.24 48.80 69.66 53.96 36.68 41.93 68.04 48.37 23.01 30.21

FAT 12/255 80.27 77.87 61.46 45.42 45.13 76.69 52.33 29.08 36.71 74.79 44.56 16.18 24.59
FAT 8/255 84.36 82.20 64.06 48.41 48.14 80.32 55.41 29.39 39.48 78.13 47.50 15.18 25.07
ATES 8/255 84.29 82.39 65.66 49.14 48.56 80.81 55.59 29.36 40.68 78.48 47.03 14.70 25.88
PGD-AT 8/255 81.12 78.94 63.48 49.03 48.58 77.19 54.42 30.84 40.82 74.37 46.28 15.77 26.47
PGD-AT 10/255 79.38 77.89 62.78 49.28 48.68 76.60 54.76 32.40 41.46 74.75 47.46 18.18 28.29
AWP 10/255 80.32 77.87 62.33 49.06 48.89 76.33 53.83 32.88 40.27 74.13 45.51 19.17 27.56
ATES 10/255 80.95 79.22 63.95 49.57 49.12 77.77 55.37 32.44 42.21 75.51 48.12 18.36 29.07
TRADES 8/255 80.53 78.58 63.69 49.63 49.42 77.20 55.48 33.32 40.94 75.05 47.92 19.27 27.82
ExAT + PGD 11/255 80.68 79.07 63.58 50.06 49.52 77.98 55.92 32.47 41.10 76.12 48.37 17.81 27.23
ExAT + AWP 10/255 80.18 78.04 63.15 49.87 49.69 76.34 54.64 33.51 41.04 74.37 46.54 20.04 28.40
AWP 8/255 80.47 78.22 63.32 50.06 49.87 76.88 54.61 33.47 41.05 74.42 46.16 19.66 28.51
OA-AT (Ours) 16/255 80.24 78.54 65.00 51.40 50.88 77.34 57.68 36.01 43.20 75.72 51.13 22.73 31.16

Gain w.r.t. AWP −0.23 +0.32 +1.68 +1.34 +1.01 +0.46 +3.07 +2.54 +2.15 +1.30 +4.97 +3.07 +2.65

A3.1. Ablation Study

In order to study the impact of different components of
the proposed defense, we present a detailed ablative study
using ResNet-18 models in Table-A1. We present results on
the CIFAR-10 and CIFAR-100 datasets, with E1 represent-
ing the proposed approach. First, we study the efficacy of
the LPIPS metric in generating Oracle-Invariant attacks. In
experiment E2, we train a model without LPIPS by setting
its coefficient to zero. While the resulting model achieves
a slight boost in robust accuracy at ε = 16/255 due to
the use of stronger attacks for training, there is a consid-
erable drop in clean accuracy, and a corresponding drop in
robust accuracy at ε = 8/255 as well. We observe a simi-

lar trend by setting the value of α to 1 as shown in E3, and
by combining E2 and E3 as shown in E4. We note that E4
is similar to standard adversarial training, where the model
attempts to learn consistent predictions in the ε ball around
every data sample. While this works well for large ε attacks
(ε = 16/255), it leads to poor clean accuracy as shown in
the first partition of Table-A2.

As discussed in Sec.4 (main paper), we maximize loss on
xi + 2 · δ̃i (where δ̃i is the attack) in the additional weight
perturbation step. We present results by using the standard
ε limit for the weight perturbation step as well, in E7. This
leads to a drop across all metrics, indicating the importance
of using large magnitude perturbations in the weight pertur-
bation step for producing a flatter loss surface that leads to



Table A3. CIFAR-100: Performance (%) of the proposed defense OA-AT against attacks with different ε bounds, when compared to the
following baselines: AWP [22], ExAT [16], TRADES [23], ATES [17], PGD-AT [14] and FAT [1]. AWP [22] is the strongest baseline.
The baselines are sorted by AutoAttack accuracy [6] (AA 8/255). The proposed defense achieves significant gains in accuracy against the
strongest attacks across all ε bounds. Since the proposed defense uses AutoAugment [7] as the augmentation strategy, we present results
on the strongest baseline AWP [22] with AutoAugment as well.

Method Attack ε
(Training)

Clean FGSM (BB)
(8/255)

R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

FAT 8/255 56.61 52.10 34.76 23.36 23.20 49.54 27.77 13.96 18.21 46.01 22.52 8.30 11.56
TRADES 8/255 58.27 54.33 36.20 23.67 23.47 51.64 28.55 13.88 18.46 48.46 22.78 8.31 11.89
PGD-AT 8/255 57.43 53.71 37.66 24.81 24.33 50.90 30.07 13.51 19.62 47.43 23.18 7.40 11.64
ATES 8/255 57.54 53.62 37.05 25.08 24.72 50.84 29.18 13.75 19.42 47.35 22.89 7.59 11.40
ExAT-PGD 9/255 57.46 53.56 38.48 25.25 24.93 51.43 30.60 15.12 20.40 48.15 24.21 8.37 12.47
ExAT-AWP 10/255 57.76 53.46 37.84 25.55 25.27 50.42 30.39 14.98 19.72 46.99 24.48 9.07 12.68
AWP 8/255 58.81 54.13 37.92 25.51 25.30 50.72 30.40 14.71 19.82 46.66 23.96 8.68 12.44
AWP (with AutoAug.) 8/255 59.88 55.62 39.10 25.81 25.52 52.75 31.11 14.80 20.24 49.44 24.99 8.72 12.80
OA-AT (Ours) (with AutoAug.) 16/255 60.27 56.27 40.24 26.41 26.00 53.86 33.78 16.28 21.47 51.11 28.02 10.47 14.60

Gain w.r.t. AWP (with AutoAug.) +0.39 +0.65 +1.14 +0.60 +0.48 +1.11 +2.67 +1.48 +1.23 +1.67 +3.03 +1.75 +1.80

Algorithm A1 Oracle-Aligned Adversarial Training
1: Input: Deep Neural Network fθ with parameters θ,

Training Data {xi, yi}Mi=1, Epochs T , Learning Rate
η, Perturbation budget εmax, Adversarial Perturbation
function A(x, y, `, ε) which maximises loss `

2: for epoch = 1 to T do
3: ε̃ = max{εmax/4, εmax · epoch/T}
4: for i = 1 to M do
5: δi ∼ U(−min(ε̃, εmax/4),min(ε̃, εmax/4))
6: if ε̃ < 3/4 · εmax then
7: ` = `CE(fθ(xi + δi), yi)

8: δ̃i = A(xi, yi, `, ε̃)

9: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
10: else if i% 2 = 0 then
11: ` = `CE(fθ(xi + δi), yi)

12: δ̂i = A(xi, yi, `, 1.5 · εmax)

13: δ̃i = Π∞(δ̂i, ε̃)

14: Ladv = KL
(
fθ(xi + δ̃i) ||

α · fθ(xi) + (1− α) · fθ(xi + δ̂i)
)

15: else
16: δi ∼ U(−ε̃, ε̃ )
17: ` = `CE(fθ(xi+ δi), yi)−LPIPS(xi, xi+ δi)
18: δ̃i = A(xi, yi, `, ε̃)

19: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
20: end if
21: L = `CE(fθ(xi), yi) + Ladv
22: θ = θ − η · ∇θL
23: end for
24: end for

better generalization to the test set. Different from the stan-
dard TRADES formulation, we maximize Cross-Entropy
loss for attack generation in the proposed method. From
E9 we note that the use of KL divergence leads to a drop
in robust accuracy since the KL divergence based attack is
weaker. This is consistent with the observation by Gowal et
al. [9].

A4. Detailed Results

In Tables-A2 and A3, we present results of different
defense methods such as AWP-TRADES [22], TRADES
[23], PGD-AT [14], ExAT [16], ATES [17] and FAT [1],
evaluated across a wide range of adversarial attacks. We
present evaluations on the Black-Box FGSM attack [8] and
a suite of White-Box attacks, on `∞ constraint sets of dif-
ferent radii: 8/255, 12/255 and 16/255. The white-box
evaluations consist of the single-step Randomized-FGSM
(R-FGSM) attack [21], the GAMA PGD-100 attack [18]
and AutoAttack [6], with the latter two being amongst
the strongest of attacks known to date. Lastly, we also
present evaluations on the Square attack [2] for ε = 12/255
and 16/255 in order to evaluate performance on Oracle-
Invariant samples at large perturbation bounds.

CIFAR-10: To enable a fair comparison of the pro-
posed approach with existing methods, we present com-
prehensive results of various defenses trained with differ-
ent attack strengths in Table-A2. In the first partition of
the table, we present baselines trained using attacks con-
strained within an `∞ bound of 16/255. While these mod-
els do achieve competitive robustness on adversaries of at-
tack strength ε = 8/255, 12/255 and 16/255, they achieve
significantly lower accuracy on clean samples which limits
their use in practical scenarios. Thus, for better comparative
analysis that accounts for the robustness-accuracy trade-off,
we present results of the existing methods with hyperpa-
rameters and attack strengths tuned to achieve the best ro-
bust performance, while maintaining clean accuracy close
to 80% as commonly observed on the CIFAR-10 dataset
on ResNet-18 architecture, in the second partition of Table-
A2. We observe that the proposed method OA-AT con-
sistently outperforms other approaches on all three metrics
described in Sec.3.3 (main paper), by achieving enhanced
performance at ε = 8/255 and 16/255, while striking a
favourable robustness-accuracy trade-off as well. The pro-
posed defense achieves better robust performance even on
the standard `∞ constraint set of 8/255 when compared to
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Figure A5. Accuracy and Loss plots on a 1000-sample class-balanced subset of the respective test-sets of CIFAR-10 and CIFAR-100
datasets. (a, c) Plots showing the trend of Accuracy (%) against PGD-7 step attacks across variation in attack perturbation bound (ε) on
CIFAR-10 and CIFAR-100 datasets with ResNet-18 architecture. As the perturbation bound increases, accuracy against white-box attacks
goes to 0, indicating the absence of gradient masking [3] (b, d) Plots showing the variation of Cross-Entropy Loss on FGSM attack [8]
against variation in the attack perturbation bound (ε) on CIFAR-10 and CIFAR-100 datasets. As the perturbation bound increases, loss
increases linearly, indicating the absence of gradient masking [3]

existing approaches, despite being trained on larger pertur-
bations sets.

CIFAR-100: In Table-A3, we present results on mod-
els trained on the highly-challenging CIFAR-100 dataset.
Since this dataset contains relatively fewer training images
per class, we seek to enhance performance further by incor-
porating the augmentation technique, AutoAugment [7, 19].
To enable fair comparison, we incorporate AutoAugment
for the strongest baseline, AWP [22] as well. We observe
that the proposed method consistently performs better than
existing approaches by significant margins, both in terms
of clean accuracy, as well as robustness against adversarial
attacks conforming to the three distinct constraint sets. Fur-
ther, this also confirms that the proposed method scales well
to large, complex datasets, while maintaining a consistent
advantage in performance compared to other approaches.

A5. Gradient Masking Checks
As discussed by Athalye et al. [3], we present various

checks to ensure the absence of Gradient Masking in the
proposed defense. In Fig.A5(a,c), we observe that the accu-
racy of the proposed defense on the CIFAR-10 and CIFAR-
100 datasets monotonically decreases to zero against 7-step
PGD white-box attacks as the perturbation budget is in-
creased. This shows that gradient based attacks indeed serve
as a good indicator of robust performance, as strong adver-
saries of large perturbation sizes achieve zero accuracy, in-
dicating the absence of gradient masking. In Fig.A5(b,d),
we plot the Cross-Entropy loss against FGSM attacks with
varying perturbation budget. We observe that the loss in-
creases linearly, thereby suggesting that the first-order Tay-
lor approximation to the loss surface indeed remains effec-
tive in the local neighbourhood of sample images, again in-
dicating the absence of gradient masking.

We verify that the model achieves higher robust accuracy

Table A4. Evaluation against various attacks with a perturba-
tion bound of ε = 8/255 on CIFAR-10: Performance (%) of the
proposed defense OA-AT against various attacks (sorted by Robust
Accuracy) to ensure the absence of gradient masking. †Includes
5000-queries of Square attack.

Attack No. of Steps No. of restarts Robust Accuracy (%)

AutoAttack† [6] 100 20 50.88
GAMA-MT [18] 100 5 50.90
ODS (98 +2 steps) [20] 100 100 50.94
MDMT attack [11] 100 10 51.19
Logit-Scaling attack [4, 10] 100 20 51.26
GAMA-PGD [18] 100 1 51.40
MD attack [11] 100 1 51.47
PGD-50 (1000 RR) [14] 50 1000 55.37
PGD-1000 [14] 1000 1 56.15

against weaker Black-box attacks, as compared to strong
gradient based attacks such as GAMA or AutoAttack in
Tables-A2,A3. We also observe that adversaries that con-
form to larger constraint sets are stronger than their coun-
terparts that are restricted to smaller epsilon bounds, as ex-
pected.

In Table-A4, we perform exhaustive evaluations using
various attack techniques to further verify the absence of
gradient masking. In addition to AutoAttack [6] which in
itself consists of an ensemble of four attacks- AutoPGD
with Cross-Entropy and Difference-of-Logits loss, the FAB
attack [5] and Square Attack [2], we present evaluations
against strong multi-targeted attacks such as GAMA-MT
[18] and the MDMT attack [11] which specifically target
other classes during optimization. We also consider the un-
targeted versions of the latter two attacks, the GAMA-PGD
and MD attack respectively. We also present robustness
against the ODS attack [20] with 100 restarts, which diversi-
fies the input random noise based on the output predictions
in order to obtain results which are less dependent on the
sampled random noise used for attack initialization. Next,
the Logit-Scaling attack [4, 10] helps yield robust evalua-
tions that are less dependent on the exact scale of output



logits predicted by the network, and is seen to be effective
on some defenses which exhibit gradient masking. How-
ever, we observe that the proposed method is robust against
all such attacks, with the lowest accuracy being attained on
the AutoAttack ensemble.

Furthermore, we evaluate the model on PGD 50-step at-
tack run with 1000 restarts. The robust accuracy saturates
with increasing restarts, with the final accuracy still being
higher than that achieved on AutoAttack. Lastly, we ob-
serve that the PGD-1000 attack is not very strong, confirm-
ing that the accuracy does not continually decrease as the
number of steps used in the attack increases. Thus, we ob-
serve that the proposed approach is robust against a diverse
set of attack methods, thereby confirming the absence of
gradient masking and verifying that the model is truly ro-
bust.

References
[1] Attacks which do not kill training make adversarial learning

stronger. In International Conference on Machine Learning
(ICML), 2020.

[2] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-
marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In The Eu-
ropean Conference on Computer Vision (ECCV), 2020.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning (ICML), 2018.

[4] Nicholas Carlini and David Wagner. Defensive distilla-
tion is not robust to adversarial examples. arXiv preprint
arXiv:1607.04311, 2016.

[5] Francesco Croce and Matthias Hein. Minimally distorted
adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning (ICML),
2020.

[6] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International Conference on Ma-
chine Learning (ICML), 2020.

[7] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations (ICLR),
2015.

[9] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann,
and Pushmeet Kohli. Uncovering the limits of adversarial
training against norm-bounded adversarial examples. arXiv
preprint arXiv:2010.03593, 2020.

[10] Dorjan Hitaj, Giulio Pagnotta, Iacopo Masi, and Luigi V
Mancini. Evaluating the robustness of geometry-aware
instance-reweighted adversarial training. arXiv preprint
arXiv:2103.01914, 2021.

[11] Linxi Jiang, Xingjun Ma, Zejia Weng, James Bailey, and
Yu-Gang Jiang. Imbalanced gradients: A new cause
of overestimated adversarial robustness. arXiv preprint
arXiv:2006.13726, 2020.

[12] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. 2009.

[13] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual
adversarial robustness: Defense against unseen threat mod-
els. International Conference on Learning Representations
(ICLR), 2021.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Tsipras Dimitris, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018.

[15] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun
Zhu. Bag of tricks for adversarial training. International
Conference on Learning Representations (ICLR), 2021.

[16] Amirreza Shaeiri, Rozhin Nobahari, and Mohammad Hos-
sein Rohban. Towards deep learning models resistant to large
perturbations. arXiv preprint arXiv:2003.13370, 2020.

[17] Chawin Sitawarin, Supriyo Chakraborty, and David Wagner.
Improving adversarial robustness through progressive hard-
ening. arXiv preprint arXiv:2003.09347, 2020.

[18] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and
R Venkatesh Babu. Guided Adversarial Attack for Evalu-
ating and Enhancing Adversarial Defenses. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[19] David Stutz, Matthias Hein, and Bernt Schiele. Relating
adversarially robust generalization to flat minima. arXiv
preprint arXiv:2104.04448, 2021.

[20] Yusuke Tashiro, Yang Song, and Stefano Ermon. Diver-
sity can be transferred: Output diversification for white-and
black-box attacks. Advances in Neural Information Process-
ing Systems (NeurIPS), 2020.
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