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Abstract

The vulnerability of Deep Neural Networks to Adver-
sarial Attacks has fuelled research towards building ro-
bust models. While most existing Adversarial Training al-
gorithms aim towards defending against imperceptible at-
tacks, real-world adversaries are not limited by such con-
straints. In this work, we aim to achieve adversarial ro-
bustness at larger epsilon bounds. We first discuss the
ideal goals of an adversarial defense algorithm beyond
perceptual limits, and further highlight the shortcomings
of naively extending existing training algorithms to higher
perturbation bounds. In order to overcome these shortcom-
ings, we propose a novel defense, Oracle-Aligned Adversar-
ial Training (OA-AT), that attempts to align the predictions
of the network with that of an Oracle during adversarial
training. The proposed approach achieves state-of-the-art
performance at large epsilon bounds (`∞ bound of 16/255)
while outperforming adversarial training algorithms such
as AWP, TRADES and PGD-AT at standard perturbation
bounds (`∞ bound of 8/255) as well.

1. Introduction
Deep Neural Networks are known to be vulnerable to

Adversarial Attacks, which are perturbations crafted with
an intention to fool the network [20]. In a classification set-
ting, adversarially perturbed images cause the network pre-
diction to flip to unrelated classes, while causing no change
in a human’s prediction (Oracle label). The definition of
adversarial attacks involves the presence of an Oracle, and
this makes it challenging to formalize threat models for the
training and verification of adversarial defenses. The widely
accepted convention used in practice is the `p norm based
threat model [3] with low-magnitude bounds to ensure im-
perceptibility [8]. For example, attacks constrained within
an `∞ norm of 8/255 on the CIFAR-10 dataset are imper-
ceptible to the human eye as shown in Fig.1(b), ensuring
that the Oracle label is unchanged.

While low-magnitude `p norm based threat models form
a crucial subset of the widely accepted definition of adver-
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Figure 1. Adversarially attacked images (b-e, g) and perturbations
(f, h) for various `∞ bounds. Attacks are generated from a PGD
Adversarially Trained model (AT) [13, 14] or a Normally Trained
model (NT). Original unperturbed image is shown in (a). Predic-
tion of the attack source model is printed above each image.

sarial attacks [7], they are not sufficient, as there exist valid
attacks at higher ε-bounds as well, as shown in Fig.1(g).
However, the challenge at large perturbation bounds is the
existence of attacks that can flip Oracle labels as well [21],
as shown in Fig.1(c-e). This makes it difficult to naively
scale existing Adversarial Training algorithms to large ε
bounds. In this work, we aim to improve robustness at larger
epsilon bounds, such as an `∞ norm bound of 16/255. We
define this as a moderate-magnitude bound, and discuss
the ideal goals for achieving robustness under this threat
model in Sec.3. We further propose a novel defense Oracle-
Aligned Adversarial Training (OA-AT), which attempts to
align the predictions of the network with that of an Oracle,
rather than enforcing all samples within the constraint set to
have the same label as the unperturbed image.
Our contributions have been summarized below:

• We define the ideal goals for a moderate-ε threat model
(`∞ radius of 16/255) and construct our goals as a fea-
sible subset of the same.

• We propose methods for generating Oracle-Aligned
adversaries, which can be used for adversarial training.

• We propose Oracle-Aligned Adversarial Training
(OA-AT) to improve robustness within the defined
moderate-ε threat model.

• We demonstrate superior performance when com-



pared to state-of-the-art methods such as AWP [23],
TRADES [24] and PGD-AT [13, 14] at ε = 16/255
while also performing better at ε = 8/255.

• We achieve improvements over the baselines even
at larger model capacities such as ResNet-34 and
WideResNet-34-10.

2. Related Works
Robustness against imperceptible attacks: Adver-

sarial Training has emerged as the most successful de-
fense strategy against `p norm bound imperceptible attacks.
PGD Adversarial Training (PGD-AT) [13] constructs multi-
step adversarial attacks by maximizing Cross-Entropy loss
within the considered threat model and subsequently mini-
mizes the same for training. This was followed by several
adversarial training methods [24, 1, 15, 23, 18, 14] that im-
proved accuracy against such imperceptible threat models
further. Zhang et al. [24] proposed the TRADES defense,
which maximizes the Kullback-Leibler (KL) divergence be-
tween the softmax outputs of adversarial and clean samples
for attack generation, and minimizes the same in addition to
the Cross-Entropy loss on clean samples for training.

Improving Robustness of base defenses: Wu et al. [23]
proposed an additional step of Adversarial Weight Perturba-
tion (AWP) to maximize the training loss, and further train
the perturbed model to minimize the same. This generates
a flatter loss surface [19], thereby improving robust gener-
alization. While this can be integrated with any defense,
AWP-TRADES is the state-of-the-art adversarial defense
today. On similar lines, the use of stochastic weight av-
eraging of model weights [10] is also seen to improve the
flatness of loss surface, resulting in a boost in robustness
[9, 4]. Recent works [14, 15, 9] attempt to find the best
training techniques such as early stopping, use of optimal
weight decay and weight averaging to achieve enhanced ro-
bust performance on base defenses such as PGD-AT [13]
and TRADES [24].

Robustness against large perturbation attacks:
Shaeiri et al. [16] demonstrate that the standard formula-
tion of adversarial training is not well-suited for achieving
robustness at large perturbations, as the loss saturates very
early. The authors propose Extended Adversarial Training
(ExAT), where a model trained on low-magnitude perturba-
tions (ε = 8/255) is fine-tuned with large magnitude per-
turbations (ε = 16/255) for merely 5 training epochs, to
achieve improved robustness at large perturbations. The au-
thors also discuss the use of a varying epsilon schedule to
improve training convergence. Friendly Adversarial Train-
ing (FAT) [1] performs early-stopping of an adversarial at-
tack by thresholding the number of times the model misclas-
sifies the image during attack generation. The threshold is
increased over training epochs to increase the strength of the
attack over training. On similar lines, Sitawarin et al. [17]

propose Adversarial Training with Early Stopping (ATES),
which performs early stopping of a PGD attack based on the
margin of the perturbed image being greater than a thresh-
old that is increased over epochs. We improve upon these
methods significantly using our proposed approach (Sec.4).

3. Preliminaries and Threat Model

3.1. Notation

We consider an N -class image classification problem
with access to a labelled training dataset D. The input im-
ages are denoted by x ∈ X and their corresponding labels
are denoted as y ∈ {1, ..., N}. The function represented by
the Deep Neural Network is denoted by fθ where θ ∈ Θ
denotes the set of trained network parameters. The N -
dimensional softmax output of the input image x is denoted
as fθ(x). Adversarial examples are defined to be images
that are crafted specifically to fool a model into making an
incorrect prediction [7]. An adversarial image correspond-
ing to a clean image x would be denoted as x̃. The set of
all images within an `p norm ball of radius ε, S(x) is de-
fined as, S(x) = {x̂ : ||x̂ − x||p < ε}. The set of all
`p norm bound adversarial examples, A(x) is defined as,
A(x) = {x̃ : fθ(x̃) 6= y, x̃ ∈ S(x)}. In this work, we
specifically consider robustness to `∞ norm bound adver-
sarial examples. We define the Oracle prediction of a sam-
ple x as the label that a human is likely to assign to the im-
age, and denote it as O(x). For a clean image, O(x) would
correspond to the true label y, while for a perturbed image
it could differ from the original label.

3.2. Nomenclature of Adversarial Attacks

Tramer et al. [21] discuss the existence of two types of
adversarial examples: Sensitivity-based examples, where
the model prediction changes, but the Oracle prediction re-
mains the same as the unperturbed image, and Invariance-
based examples, where the Oracle prediction changes,
while the model prediction remains unchanged. Models
trained using standard empirical risk minimization are sus-
ceptible to sensitivity-based adversarial examples, while
models which are overly robust to large perturbation bounds
could be susceptible to invariance-based examples. Since
these definitions are dependent on the model being consid-
ered, we define a nomenclature which only depends on the
input image and the threat model considered, as below:

• Oracle-Invariant set OI(x), is defined as the set of all
images within the bound S(x), which preserve the Or-
acle label. The Oracle is invariant to such perturba-
tions: OI(x) := {x̂ : O(x̂) = O(x), x̂ ∈ S(x)}

• Oracle-Sensitive set OS(x), is defined as the set of all
images within the bound S(x), which flip the Oracle
label. The Oracle is sensitive to such perturbations:
OS(x) := {x̂ : O(x̂) 6= O(x), x̂ ∈ S(x)}



3.3. Objectives of the Proposed Defense

Defenses based on the conventional `p norm threat
model defined in Sec.3.1 attempt to train models which are
invariant to all samples within S(x). This is an ideal re-
quirement for low ε-bound perturbations, where the added
noise is imperceptible, and hence all samples within the
threat model are Oracle-Invariant. An example of a low ε
threat model is the constraint set defined by ε = 8/255 for
the CIFAR-10 dataset, which produces adversarial exam-
ples that are perceptually similar to the corresponding clean
images, as shown in Fig.1(b).

As we move to larger ε bounds, Oracle-labels begin to
change, as shown in Fig.1(c, d, e). For a very high pertur-
bation bound such as 32/255, the changes produced by an
attack are clearly perceptible and cause a change in the Or-
acle label in many cases. Hence, robustness at such large
bounds may not be of much practical relevance. The fo-
cus of this work is to achieve robustness within a moderate-
magnitude `p norm bound threat model, where some per-
turbations look partially modified (Fig.1(c)), while others
look unchanged (Fig.1(g)), as is the case with ε = 16/255
for CIFAR-10. The existence of attacks that do not sig-
nificantly change the perception of the image necessitates
the requirement of robustness within such bounds, while
the existence of partially Oracle-Sensitive samples makes
it difficult to use standard adversarial training methods on
the same. The ideal goals for training defenses under this
moderate-magnitude threat model are described below:

• Robustness against samples which belong to OI(x)
• Sensitivity towards samples which belong to OS(x),

with model’s prediction matching the Oracle label
• No specification on Out-of-Distribution (OOD) images
We incorporate these goals in the training objective of

our proposed defense, which is discussed in Sec.4. Given
the practical difficulty in assigning Oracle labels, we con-
sider the following criteria for our defense evaluations:

• Robustness-Accuracy trade-off, measured using accu-
racy on clean samples and robustness against valid at-
tacks within the threat model (discussed below)

• Robustness against all attacks within ε = 8/255, mea-
sured using strong white-box attacks [5, 18]

• Robustness to Oracle-Invariant samples within ε =
16/255, measured using gradient-free attacks [2]

We do not explicitly define goals for white-box attacks
within the moderate ε bound of 16/255 since the exis-
tence of Oracle-Sensitive samples within this bound is im-
age specific. We note from Fig.1(c) and Fig.A3(b) (Suppl.)
that most adversarial examples look partially modified at
ε = 16/255.

4. Proposed Method
In order to achieve the goals discussed in Sec.3.3, we

require to generate Oracle-Sensitive and Oracle-Invariant

samples and impose specific training losses on each of them
individually. Since labeling adversarial samples as Oracle-
Invariant or Oracle-Sensitive is expensive and cannot be
done while training networks, we propose to use attacks
which ensure a given type of perturbation (OI or OS) by
construction, and hence do not require explicit annotation.
Generation of Oracle-Sensitive examples: Robust mod-
els are known to have perceptually aligned gradients [22].
Adversarial examples generated using a robust model tend
to start looking like the target (other) class images at large
perturbation bounds, as seen in Fig.1(c, d, e). We therefore
use large ε white-box adversarial examples generated from
the model being trained as Oracle-Sensitive samples, and
the model prediction as a proxy to the Oracle prediction.
Generation of Oracle-Invariant examples: While the
strongest Oracle-Invariant examples are generated using the
gradient-free Square attack [2] (Fig.A1, Suppl.), it uses
5000 queries, which is computationally expensive for use
in adversarial training. Reducing the number of queries
weakens the attack significantly. The most efficient attack
that is widely used for adversarial training is the PGD 10-
step attack. However, it cannot be used for the generation
of Oracle-Invariant samples as gradient-based attacks gen-
erated from adversarially trained models produce Oracle-
Sensitive samples. We propose to use the Learned Per-
ceptual Image Patch Similarity (LPIPS) measure for the
generation of Oracle-Invariant attacks, as it is known to
match well with perceptual similarity [25, 12]. As shown
in Fig.A2 (Suppl.), while the standard AlexNet model used
in prior work [12] fails to distinguish between Oracle-
Invariant and Oracle-Sensitive samples, an adversarially
trained model is able to distinguish between the two effec-
tively. We therefore propose to minimize the LPIPS dis-
tance between natural and perturbed images, in addition
to the maximization of Cross-Entropy loss for attack gen-
eration: LCE(x, y) − λ · LPIPS(x, x̂). We choose λ as
the minimum value that transforms the attack from Oracle-
Sensitive to Oracle-Invariant (OI), to generate strong OI at-
tacks (Fig.A3, Suppl.). This is fine-tuned during training to
achieve the optimal robustness-accuracy trade-off.

Oracle-Aligned Adversarial Training (OA-AT): The
training algorithm for the proposed defense, Oracle-
Aligned Adversarial Training (OA-AT) is presented in
Algorithm-A1 (Suppl.). We use the Trades-AWP formu-
lation [24, 23] as the base implementation, with Cross-
Entropy loss instead of KL-divergence loss for attack gen-
eration, as it results in stronger attacks [9]. We maximize
loss on xi + 2 · δ̃i (where δ̃i is the attack) in the additional
weight perturbation step, as it results in improved robust
generalization. We use cosine learning rate schedule.

We start with an initial ε value of 4/255 upto one-fourth
the training epochs, and ramp up this value linearly to a
value of 16/255 at the last epoch. We use 5 attack steps



Table 1. CIFAR-10, CIFAR-100: Performance (%) of the pro-
posed defense OA-AT compared to baselines, against attacks with
different ε bounds. Sorted by AutoAttack (AA) [5] accuracy at
ε = 8/255

Method Clean GAMA
(8/255)

AA
(8/255)

GAMA
(12/255)

Square
(12/255)

GAMA
(16/255)

Square
(16/255)

CIFAR-10 (ResNet-18)

FAT [1] 84.36 48.41 48.14 29.39 39.48 15.18 25.07
PGD-AT [13] 79.38 49.28 48.68 32.40 41.46 18.18 28.29
AWP [23] 80.32 49.06 48.89 32.88 40.27 19.17 27.56
ATES [17] 80.95 49.57 49.12 32.44 42.21 18.36 29.07
TRADES [24] 80.53 49.63 49.42 33.32 40.94 19.27 27.82
ExAT-PGD [16] 80.68 50.06 49.52 32.47 41.10 17.81 27.23
ExAT + AWP 80.18 49.87 49.69 33.51 41.04 20.04 28.40
AWP [23] 80.47 50.06 49.87 33.47 41.05 19.66 28.51
OA-AT (Ours) 80.24 51.40 50.88 36.01 43.20 22.73 31.16

Gain w.r.t. AWP −0.23 +1.34 +1.01 +2.54 +2.15 +3.07 +2.65

CIFAR-100 (ResNet-18)

AWP [23] 59.88 25.81 25.52 14.80 20.24 8.72 12.80
OA-AT (Ours) 60.27 26.41 26.00 16.28 21.47 10.47 14.60

Gain w.r.t. AWP +0.39 +0.60 +0.48 +1.48 +1.23 +1.75 +1.80

when ε = 4/255 and 10 attack steps later. We perform
standard adversarial training upto ε = 12/255 as the at-
tacks in this range are imperceptible. Beyond this, we start
incorporating separate training losses for Oracle-Invariant
and Oracle-Sensitive samples in alternate training itera-
tions. Oracle-Sensitive samples are generated by maximiz-
ing Cross-Entropy loss in a PGD attack formulation. Rather
than enforcing the predictions of such attacks to be similar
to the original image, we allow the network to be partially
sensitive to such attacks by training them to be similar to a
convex combination of predictions on the clean image and
perturbed samples at larger (1.5 · εmax) bounds as shown:
Ladv = KL

(
fθ(xi + δ̃i) || α fθ(xi) + (1−α) fθ(xi + δ̂i)

)
Here δ̃i is the perturbation at the varying epsilon value
ε̃, and δ̂i is the perturbation at 24/255. This results in
better robustness-accuracy trade-off as shown in Table-A1
(Suppl.). In the other alternate iteration, we use the LPIPS
metric to generate strong and efficient Oracle-Invariant at-
tacks during training. We perform exponential weight-
averaging of the network being trained and use this for com-
puting the LPIPS metric for improved and stable results
(Table-A1, Suppl.). We increase α and λ over training, as
the nature of attacks changes with varying ε. The use of
both Oracle-Invariant (OI) and Oracle-Sensitive (OS) sam-
ples ensures robustness to OI samples while allowing sensi-
tivity to partially OS samples.

5. Experiments and Results
We compare performance of the proposed approach with

the existing defenses discussed in Sec.2 on the CIFAR-10
[11] dataset in Table-1. We train all models on ResNet-
18 architecture for 110 epochs. For each baseline, we find
the best set of hyperparameters to achieve clean accuracy of
around 80% to ensure a fair comparison across all methods.
We also perform baseline training across various ε values

Table 2. CIFAR-10: Performance (%) of the proposed de-
fense OA-AT (Ours) compared to the strongest baseline, AWP-
TRADES (AWP) [23] against attacks with different ε bounds

Method Model Clean AA
(8/255)

Square
(12/255)

AA
(12/255)

Square
(16/255)

AA
(16/255)

AWP RN-18 80.47 49.87 41.05 33.19 28.51 19.23
Ours RN-18 80.24 50.88 43.20 35.39 31.16 22.00
AWP RN-34 83.89 52.44 42.84 34.61 29.22 19.69
Ours RN-34 84.07 53.22 45.03 36.31 32.47 22.00

AWP WRN-34 85.19 55.69 46.48 38.05 32.68 23.46
Ours WRN-34 85.54 55.67 48.15 38.13 35.20 22.92
AWP + WA WRN-34 85.10 55.87 46.52 37.97 32.50 23.27
Ours + WA WRN-34 85.67 55.93 48.79 39.06 35.76 24.05

and report the best baselines in Table-1. We observe that
baseline defenses do not perform well when trained using
large ε bounds such as 16/255 (Table-A2, Suppl.). We re-
port adversarial robustness against the strongest known at-
tacks, AutoAttack (AA) [5] and GAMA PGD-100 (GAMA)
[18] for ε = 8/255 in order to obtain the worst-case robust
accuracy. For larger bounds such as 12/255 and 16/255,
we primarily aim for robustness against the Square attack
[2], as it is the strongest known Oracle-Invariant attack. We
compare the proposed approach against the strongest base-
line AWP-TRADES [23] on CIFAR-100 in Table-1 (ref.
Table-A3, Suppl. for detailed results), and on CIFAR-10
with larger capacity models in Table-2. We observe signifi-
cant gains with the use of AutoAugment [6, 19] on CIFAR-
100, and additionally with Model Weight Averaging (WA)
[10, 9, 4] at larger model capacities. To ensure a fair com-
parison, we consider these for the AWP baseline as well.

Results: The proposed defense achieves consistent gains
across all metrics considered in Sec.3.3 (AutoAttack [5] at
ε = 8/255 and Square attack [2] at larger ε bounds). Al-
though we train the model for achieving robustness at larger
ε bounds, we achieve an improvement in the robustness at
ε = 8/255 as well, which is not observed in any of the exist-
ing methods (Table-A2, Suppl.). We evaluate the proposed
defense against diverse attacks (Table-A4, Suppl.) and san-
ity checks (Sec.A5, Suppl.) to ensure the absence of gradi-
ent masking.

6. Conclusions
We explore the idea of robustness beyond perceptual

limits in an `p norm based threat model. We first discuss
the ideal goals of an adversarial defense at larger perturba-
tion bounds, and further propose a novel defense, Oracle-
Aligned Adversarial Training (OA-AT) that aims to align
model predictions with that of an Oracle during training.
The key aspects of the defense include the use of LPIPS
metric for generating Oracle-Invariant attacks during train-
ing, and the use of a convex combination of clean and ad-
versarial image predictions as targets for Oracle-Sensitive
samples. We achieve significant gains in robustness at low
and moderate perturbation bounds, and a better robustness-
accuracy trade-off.
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