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Background and Motivation Contributions

on Computer Vision

® Goal : Achieving adversarial robustness against Sparse Attacks (patch \ e We propose Feature Consistency Regularizer (FCR) based training that uses :
attacks, LO norm bound attacks) efficiently o [FCR-RL] Random augmentations at random locations (RL)

® There has been steady progress in defending against L-inf and L2 horm o [FCR-GL] Random augmentations at (single-step) gradient locations (GL)
bound attacks effectively and efficiently o [FCR-GLA] Single-step gradients for attack generation and training in

e Challenges in defending Real World Attacks alternate training iterations

Generalizes better that existing empirical and certified defenses to unseen

o Sparse attacks are easier to implement in the real-world °

o Adversarial attack generation is computationally more expensive under sparse attacks such as multi-patch attacks and LO norm bound attacks

sparse threat models (requires 10-50 attack steps), making standard e Achieves a large boost in robustness when combined with the state-of-the-art

adversarial training more expensive certified patch defense, BagCert

Adversarial attacks in the real world need not be restricted to a single/ ® The proposed algorithm can be extended to other threat models as well. We

threat model - generalization to unseen attacks is important demonstrate improvements on an LO norm based threat model as well

Feature Consistency Regularizer (FCR)

Results on CIFAR-10

CIFAR-10: Performance (%) of the proposed methods
FCR-RL, FCR-GL and FCR-GLA against PGD 150-step all loca-

tion attack with multiple random restarts (RR) and Patch-RS (P-

RS) attack [4] with 10000 queries (Q). FP: Forward pass, F+BP:
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Generalization to unseen attacks

Performance (%) of the proposed methods FCR-RL, FCR-GL and FCR-GLA compared to
baselines, against patch attacks, ¢p and ¢; norm bound attacks on the CIFAR-10 dataset. All defenses are trained to be robust to a single

Results on ImageNet-100

Generalization to unseen attacks:

ImageNet-100:
ods FCR-RL, FCR-GL and FCR-GLA compared to baselines,

Performance (7) of the proposed meth- square patch attack of size 5 x 5. We evaluate these defenses against various attacks that are unseen during training, such as the square

multi-patch attack, rectangular single-patch attack, and (o, ¢1 norm bound attacks. Patch-RS [4] with 10000 queries is used for evaluating

against PGD 30-step all location patch attack (stride=4) of differ- robustness to patch attacks. Square attack [5, 6]  with 1000 queries and lo-RS [4] attack with 5000 queries are used for evaluation of /4
ent sizes (1%, 2% and 3%) with 10 random restarts (RR) and (g attacks respectively. The first two partitions use ResNet-20 architecture and the third partition uses BagNet [7] architecture.
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Robustness against LO norm bound attacks
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