

Efficient Training Methods for Achieving Adversarial Robustness against Sparse Attacks

Sravanti Addepalli*, Dhruv Behl*, Gaurang Sriramanan, R. Venkatesh Babu **Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India**

Background and Motivation

- Goal : Achieving adversarial robustness against Sparse Attacks (patch attacks, L0 norm bound attacks) efficiently
- There has been steady progress in defending against L-inf and L2 norm bound attacks effectively and efficiently
- Challenges in defending Real World Attacks
 - Sparse attacks are easier to implement in the real-world
 - Adversarial attack generation is computationally more expensive under sparse threat models (requires 10-50 attack steps), making standard adversarial training more expensive

Contributions

- We propose Feature Consistency Regularizer (FCR) based training that uses :
 - [FCR-RL] Random augmentations at random locations (RL)
 - [FCR-GL] Random augmentations at (single-step) gradient locations (GL)
 - [FCR-GLA] Single-step gradients for attack generation and training in alternate training iterations
- Generalizes better that existing empirical and certified defenses to unseen sparse attacks such as multi-patch attacks and L0 norm bound attacks
- Achieves a large boost in robustness when combined with the state-of-the-art certified patch defense, BagCert

• Adversarial attacks in the real world need not be restricted to a single threat model - generalization to unseen attacks is important

• The proposed algorithm can be extended to other threat models as well. We demonstrate improvements on an LO norm based threat model as well

Feature Consistency Regularizer (FCR)

Results on CIFAR-10

CIFAR-10: Performance (%) of the proposed methods FCR-RL, FCR-GL and FCR-GLA against PGD 150-step all location attack with multiple random restarts (RR) and Patch-RS (P-RS) attack [4] with 10000 queries (Q). FP: Forward pass, F+BP: Forward and Backward passes

Method	# steps	# steps	Clean	PGD	PGD	P-RS
	location	attack	ACC	10 KK	100 KK	TOK Q
AT-ROA (DOA) [1]	784 FP	30	83.6	30.2	29.8	41.3
AT-FullLO ^[2]	200 FP	50	88.7	33.4	32.9	40.8
FCR-RL (Ours)	0 FP	0	87.9	30.6	26.1	40.2
FCR-GL (Ours)	0.5 F+BP	0	84.9	38.8	34.3	50.1
FCR-GLA (Ours)	0.5 F+BP	0.5	85.3	42.8	41.1	56.4

Generalization to unseen attacks

Generalization to unseen attacks: Performance (%) of the proposed methods FCR-RL, FCR-GL and FCR-GLA compared to baselines, against patch attacks, ℓ_0 and ℓ_1 norm bound attacks on the CIFAR-10 dataset. All defenses are trained to be robust to a single square patch attack of size 5×5 . We evaluate these defenses against various attacks that are unseen during training, such as the square multi-patch attack, rectangular single-patch attack, and ℓ_0 , ℓ_1 norm bound attacks. Patch-RS^[4] with 10000 queries is used for evaluating robustness to patch attacks. Square attack [5, 6] with 1000 queries and l_0 -RS [4] attack with 5000 queries are used for evaluation of ℓ_1 architecture and the third partition uses BagNet [7] architecture. and ℓ_0 attacks respectively. The first two partitions use ResNet-20

Performance (%) of the proposed meth-ImageNet-100: ods FCR-RL, FCR-GL and FCR-GLA compared to baselines, against PGD 30-step all location patch attack (stride=4) of different sizes (1%, 2% and 3%) with 10 random restarts (RR). FP : Forward pass, F+BP: Forward and Backward passes

Results on ImageNet-100

Mathad	# steps	# steps	Clean	PGD-30 10RR			
wieulou	location	attack	Acc	1%	2%	3%	
AT-ROA (DOA) [1]	1444 FP	20	71.8	14.7	10.5	7.6	
AT-FullLO ^[2]	80 FP	20	75.1	18.4	15.8	12.0	
FCR-RL (Ours)	0 FP	0	75.5	13.9	9.6	5.8	
FCR-GL (Ours)	0.5 F+BP	0	75.2	18.8	15.7	11.6	
FCR-GLA (Ours)	0.5 F+BP	0.5	74.9	23.1	19.8	17.1	

Mathad		Patch attack (Total budget ~25 pixels)							5.		Avg (unseen	No. of	Time /	Total
Method	Clean Acc	1 square 5x5	2 squares 4x4, 3x3	3 squares {3x3}^3	4 squares {3x3, 2x2}^2	5 squares 3x3, {2x2}^4	6 squares {2x2}^6	1 rectangle 3x8/ 2x12/ 1x25	$\frac{\ell_1}{(\varepsilon = 5)}$	ℓ_0 ($\varepsilon = 7$)	threat models)	epochs	epoch (sec)	time (hrs)
DS (Certified 56.2%)	83.9	70.5	59.2	50.5	43.2	41.9	39.7	40.2	45.1	58.5	49.7	350	42	4.1
Mask-DS (Certified 58.1%)	84.5	73.1	60.5	51.3	44.0	42.6	40.4	40.7	43.0	59.1	49.5	350	42	4.1
AT-ROA [1]	83.6	41.3	35.1	32.2	30.6	29.3	28.2	29.4	61.9	65.3	52.6	120	370	12.3
AT-FullLO [2]	88.7	40.8	36.3	34.1	31.5	29.7	29.1	28.0	63.2	62.4	52.3	200	400	22.2
FCR-RL (Ours)	87.9	40.2	35.8	33.2	30.4	29.5	28.6	26.3	65.8	61.1	52.5	125	30	1.0
FCR-GL (Ours)	84.9	50.1	44.4	41.7	40.5	39.5	39.1	33.0	69.6	67.4	58.9	125	38	1.3
FCR-GLA (Ours)	85.3	56.4	50.4	46.9	44.9	44.1	43.4	40.4	70.1	69.5	61.5	125	45	1.5
BagCert (Certified 60%) [3]	85.0	76.3	46.7	42.6	37.8	35.3	34.6	44.2	55.5	49.1	48.2	350	75	7.2
FCR-GLA (Ours)	8 <mark>4</mark> .4	64.8	58.5	53.1	49.4	47.5	44.1	45.3	74.1	62.7	62.1	200	70	3.9
FCR-GLA (Ours+BagCert)	84.1	75.2	61.4	54.2	47.9	43.6	42.8	44.1	65.3	56.5	56.9	350	90	8.7

Results on GTSRB Stop Sign dataset

Performance (%) of the **GTSRB** Stop Sign dataset: proposed methods FCR-RL, FCR-GL and FCR-GLA compared to baselines, against Stop Sign attack [1] with multiple random restarts (RR). FP : Forward pass, F+BP: Forward and Backward passes

Method	# steps location	# steps attack	Clean Acc	1 RR	10 RR	100 RR	
--------	---------------------	-------------------	--------------	-------------	-------	--------	--

Robustness against LO norm bound attacks

CIFAR-10, ℓ_0 threat model: Performance (%) of the proposed methods FCR-RL, FCR-GL and FCR-GLA trained using ℓ_0 norm bound perturbations, against l_0 -RS attack 4 with 25000 queries and ℓ_0 perturbation bound k. The proposed method achieves robustness comparable to the multi-step defense PGD₀-AT [8] at around $6 \times$ lower computational cost.

> **# steps** Clean l_0 -RS (25k) Time/ No. of Time 1. 10 1. 15

References

[1] Tong Wu, Liang Tong, and Yevgeniy Vorobeychik. Defending Against Physically Realizable Attacks on Image Classification. (ICLR), 2020. [2] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial Training against Location-Optimized Adversarial Patches. ECCV Workshop (CV-COPS), 2020. [3] Jan Hendrik Metzen and Maksym Yatsura. Efficient Certified Defenses Against Patch Attacks on Image Classifiers. ICLR 2021 [4] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and Matthias Hein. Sparse-RS: A versatile framework for query-efficient sparse black-box adversarial attacks. ECCV Workshop on Adversarial Robustness in the Real World, 2020 [5] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square Attack: a query-efficient black-box adversarial attack via random search. ECCV, 2020. [6] Francesco Croce and Matthias Hein. Mind the box: L1-apgd for sparse adversarial attacks on image classifiers. ICML 2021 [7] Wieland Brendel and Matthias Bethge. Approximating CNNs with Bag-of-local-features models works surprisingly well on ImageNet. ICLR 19

AT-ROA (DOA) [1]	676 FP	30	94.3	85.5	75.3	74.1
AT-FullLO [2]	200 FP	50	93.2	82.9	68.8	68.0
FCR-RL (Ours)	0	0	94.7	81.3	71.9	69.5
FCR-GL (Ours)	0.5 F+BP	0	93.9	84.1	76.2	75.8
FCR-GLA (Ours)	0.5 F+BP	0.5	92.6	85.0	79.3	78.6

	attack	Acc	K=10	K=15	epoch (s)	epochs	(hrs)
PGD ₀ -AT [8]	40	87.1	43.2	32.8	390	100	10.8
FCR-RL (Ours)	0	88.6	31.1	20.7	35	125	1.2
FCR-GL (Ours)	0	86.5	36.3	24.9	43	125	1.5
FCR-GLA (Ours)	0.5	85.2	38.7	27.0	50	125	1.7

[8] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. ICCV, 2019.

Acknowledgements: This work was supported by Uchhatar Avishkar Yojana (UAY) project (IISC 10), MHRD, Govt. of India. Sravanti Addepalli is supported by a Google PhD Fellowship in Machine Learning

Method