

AdvFoolGen: Creating Persistent Troubles for Deep Classifiers Yuzhen Ding, Nupur Thakur, Baoxin Li

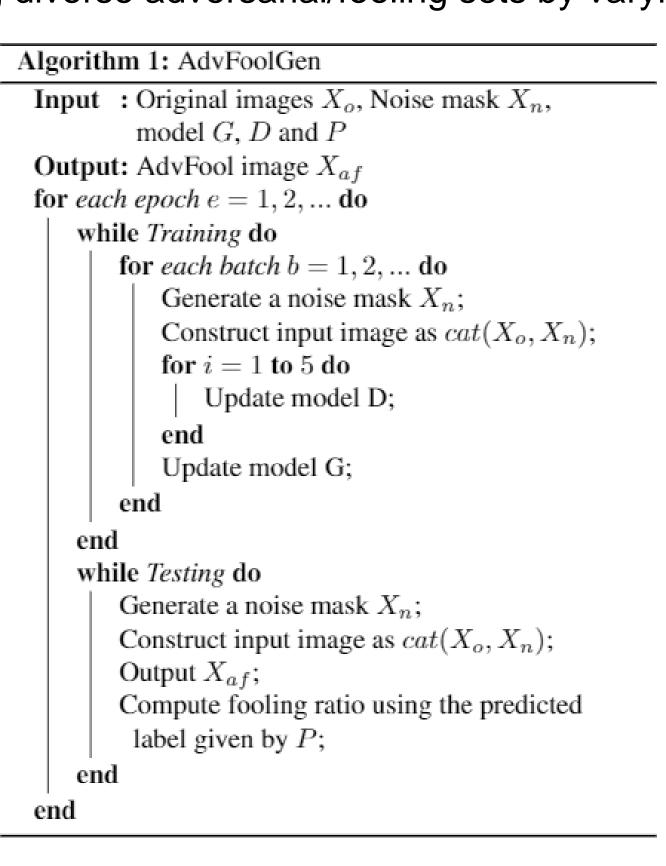
Yuzhen Ding, Nupur Thakur, Baoxin Li Arizona State University

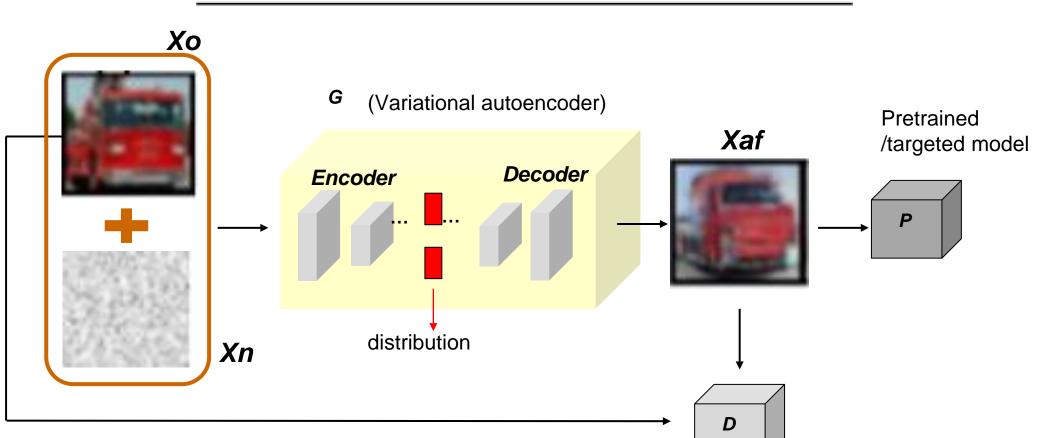
Introduction

- > Deep neural networks are vulnerable to malicious attacks.
- Many defense mechanisms are effective for guarding against typical attacks
- AdvFoolGen, an adversarial attack contributes to understanding the vulnerability of deep networks from a new perspective and may, in turn, help in developing and evaluating new defense mechanisms.

The Technique: AdvFoolGen

- > A VAE-GAN-like structure.
- > Exploring the latent space where the clean samples lie.
- Generating diverse adversarial/fooling sets by varying the training epochs.





Experiments

Initial Fooling ratio:

Attack Algorithm	Initial Fooling Ratio			
	CIFAR10	TinyImageNet		
		Top1	Top5	
FGSM	92.82% *	88.55% *	75.18% *	
I-FGSM	99% *	100% *	98.86% *	
DeepFool	99%	99%	83.77%	
C&W	100%	99.12%	90.63%	
GAP	82%	94.98%	87.01%	
AdvFoolGen	68.5% - 78.36%**	95.41%-97.65%**	90.14%-93.07%**	

Reattack fooling ratio with defense applied:

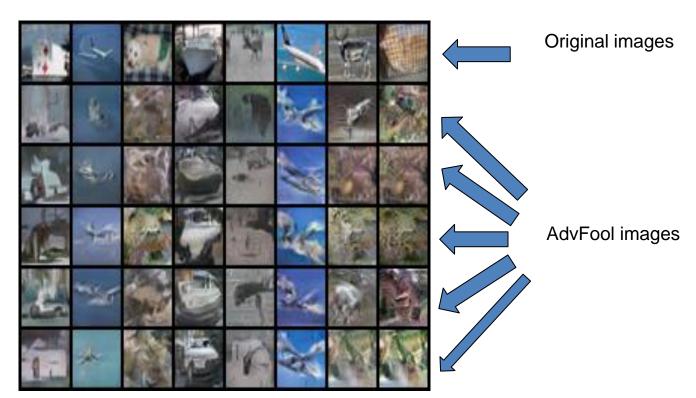
CIFAR10

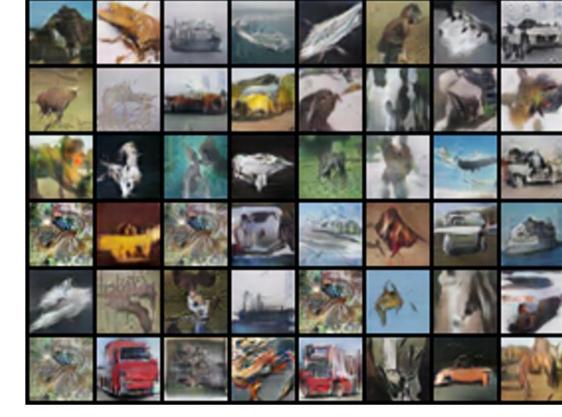
Attack	Retraining*	Adv Training	BDR-3	BDR-8	JPEG
FGSM	9.76%	35.9%	18.21%	16.2%	18.6%
I-FGSM	8.22%	39.3%	12.32%	11.2%	13.1%
DeepFool	9.87%	26.5%	14.55%	14.1%	14.8%
C&W	9.2%	41.25%	12.97%	12.19%	15.67%
GAP	8.91%	9.04%	14.99%	15.09%	19.89%
AdvFoolGen	27.3%-58.1%	59.56%-65.26%	37.08%-52.82%	24.76%-35.4%	24.44%-50.64%

TinyImageNet

Attack Algorithm	Retraining*	Adversarial Training	BDR-3	JPEG
FGSM	30.8%	49.37%	51.92%	54.18%
I-FGSM	40.5%	48.74%	48.44%	51.15%
DeepFool	29.2%	47.36%	43.02%	47.76%
CW	30.04%	48.61%	46.95%	47.26%
GAP	34.09%	33.76%	33.55%	35.21%
AdvFoolGen**	43.1%-57.2%	54.6%-61.0%	40.3%-66.4%	42.1%-63.9%

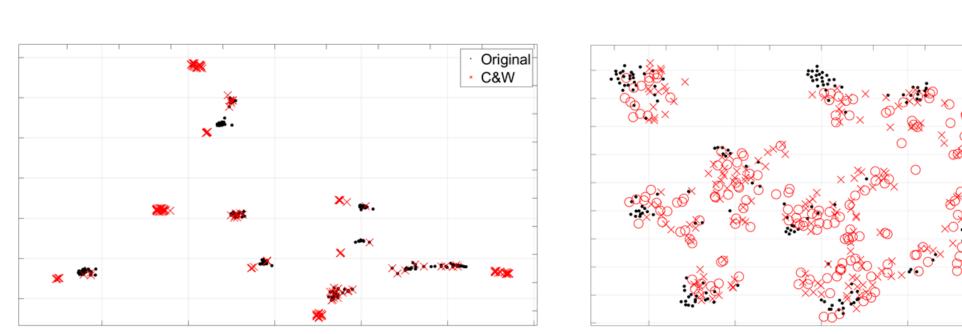
> Samples generated from different epochs:



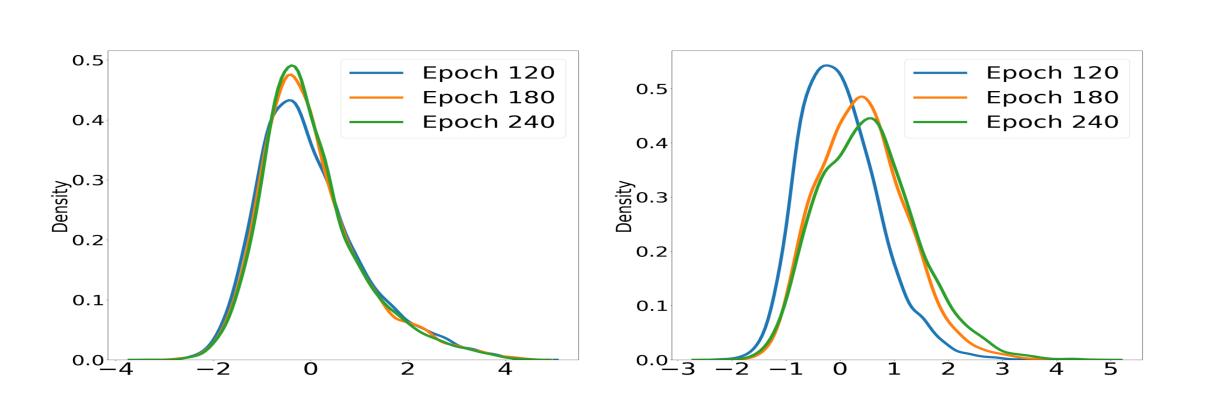


Analysis

How advfool samples and original samples behave in the latent space?



Analytical Study of AdvFool Images



Epoch	Mean		Variance	
	$ \mathbf{KLD}(\mathbf{P}\ \mathbf{Q}) $	KLD(Q P)	KLD(P Q)	$ \mathbf{KLD}(\mathbf{Q} \mathbf{P}) $
120 &180	0.0491	0.0123	1.35	0.299
120 & 240	0.0102	0.0129	2.513	0.313
120 & 330	0.0103	0.0129	2.539	0.314
120 & 360	0.0131	0.0130	2.546	0.314

Summary/Conclusion

- > Over-parameterized network leaves backdoors for attackers.
- > Simple defenses like retraining can be easily baffled.