Towards Achieving Adversarial Robustness **Beyond Perceptual Limits**

Sravanti Addepalli*, Samyak Jain*, Gaurang Sriramanan, Shivangi Khare, R.Venkatesh Babu Video Analytics Lab, Indian Institute of Science, Bangalore, India

Preliminaries: Threat Model and Terminology **Goals and Evaluation Metrics** • Robustness against all attacks within $\varepsilon = 8/255$ • Threat model considered: Moderate- $\epsilon \ell_{\infty}$ norm bound of 16/255 • Human prediction is referred to as the Oracle Label • Robustness to Oracle-Invariant samples within $\varepsilon = 16/255$ • Types of perturbations within the defined threat model: Gradient-Free Attacks Oracle-Invariant images: Do not change Oracle prediction Clean Images (along with their labels) Adversarial examples generated from Normally trained models • Adversarial examples at low perturbation bounds ($\varepsilon = 8/255$) Clean Images (along with their labels) Dog Adversarial Perturbations generated from a **Normally Trained** (NT) Model Robustness-Accuracy trade-off **Oracle-Invariant** Adversarial examples (along with NT model predictions) Scaling existing AT methods to larger ε bounds Bird Bird Cat Bird Bird Frog = 32/255 -----> Deer $\epsilon = 16/255$ 8/255 16/255 24/255 Original • Oracle-Sensitive images: Flip the Oracle prediction Method Adversarial examples generated from Adversarially Trained models at large perturbation bounds ($\varepsilon = 32/255$) 8/255 81.12 49.03 48.58 15.77 26.47 PGD-AT 16/255 64.93 46.66 46.21 26.73 PGD-AT Clean Images (along with their labels) Aero Dog Auto Bird Frog Horse Cat Ship Truck Deer Results Adversarial Perturbations generated from an **Adversarially Trained** (AT) Model Metrics of interest Others GAMA AA SQ+RS GAMA AA 8/255 8/255 16/255 16/255 16/255 Method CIFAR-10 (ResNet-18), 110 epochs **84.36** 48.41 48.14 23.22 15.18 14.22 FAT **Oracle-Sensitive** Adversarial examples (along with AT model predictions) PGD-AT 79.38 49.28 48.68 25.43 18.18 17.00 Deer Auto Horse Dog Auto Frog Frog Truck Horse Truck AWP 80.32 49.06 48.89 25.99 19.17 18.77 80.95 49.57 49.12 26.43 18.36 16.30 ATES ε = 32/255 TRADES 80.53 49.63 49.42 26.20 19.27 18.23 80.68 50.06 49.52 25.13 17.81 19.53 ExAT + PGDExAT + AWP 80.18 49.87 49.69 27.04 20.04 16.67 **Partially Oracle-Sensitive** Adversarial examples 80.47 50.06 49.87 27.20 19.66 19.23 AWP 80.24 **51.40 50.88 29.56 22.73 22.05** Ours $\epsilon = 16/255$ CIFAR-10 (ResNet-34), 110 epochs 83.89 52.64 52.44 27.69 20.23 19.69 AWP **Oracle-Invariant** Adversarial examples OA-AT (Ours) 84.07 53.54 53.22 30.76 22.67 22.00 CIFAR-10 (WRN-34-10), 110 epochs ε = 8/255 85.19 55.87 55.69 31.27 24.04 23.46 AWP

Acknowledgements: This work was supported by Uchhatar Avishkar Yojana (UAY) project (IISC 10), MHRD, Govt. of India. Sravanti Addepalli is supported by a Google PhD Fellowship in Machine Learning. We are thankful for the support.

AWP+

85.10 56.07 55.87 31.36 23.79 23.27

OA-AT (Ours) 85.67 56.45 55.93 33.89 25.21 24.05

Auto-Attack (AA) and Guided Adversarial Margin Attack (GAMA) PGD-100

	I	Metrics of	Others			
Method	Clean	GAMA 8/255	AA 8/255	SQ+RS 16/255	GAMA 16/255	AA 16/255
CII	FAR-10	0 (ResN	et-18),	110 epo	chs	
AWP	58.81	25.51	25.30	11.39	8.68	8.29
AWP+	59.88	25.81	25.52	11.85	8.72	8.28
OA-AT (no LS)	60.27	26.41	26.00	13.48	10.47	9.95
OA-AT (Ours)	61.70	27.09	26.77	13.87	10.40	9.91
CIFAR	-100 (I	PreActR	esNet-1	18), 200 (epochs	
AWP	58.85	25.58	25.18	11.29	8.63	8.19
AWP+	62.11	26.21	25.74	12.23	9.21	8.55
OA-AT (Ours)	62.02	27.45	27.14	14.52	10.64	10.10
CIF	AR-100) (WRN-	-34-10)	, 110 epo	ochs	
AWP	62.41	29.70	29.54	14.25	11.06	10.63
AWP+	62.73	29.92	29.59	14.96	11.55	11.04
OA-AT (no LS)	65.22	30.75	30.35	16.77	12.65	11.95
OA-AT (Ours)	65.73	30.90	30.35	17.15	13.21	12.01
SVH	IN (Pre	ActRes	Net-18)	, 110 epo	ochs	
Mathad	Clean	GAMA	AA	SQ+RS	GAMA	AA
Method		4/255	4/255	12/255	12/255	12/255
AWP	91.91	75.92	75.72	35.49	30.70	30.31
OA-AT (Ours)	94.61	78.37	77.96	39.24	34.25	33.63

	CIFAR-10				CIFAR-100				
	Clean	GAMA (8/255)	GAMA (16/255)	Square (16/255)	Clean	GAMA (8/255)	GAMA (16/255)	Square (16/255)	
1	80.24	51.40	22.73	31.16	60.27	26.41	10.47	14.60	
	78.47	50.60	24.05	31.37	58.47	25.94	10.91	14.66	
	79.29	50.60	23.65	31.23	58.84	26.15	10.97	14.89	
0	77.16	50.49	24.93	32.01	57.77	25.92	11.33	15.03	
	80.24	51.40	22.73	31.16	58.08	25.81	10.40	14.31	
	81.59	50.40	21.59	30.84	60.27	26.41	10.47	14.60	
	81.74	48.15	18.92	28.31	60.19	25.32	9.24	13.78	