
● Varying epsilon training schedule with TRADES-AWP loss (CE loss for attack)
● Standard Adversarial training till the perceptual limit of ε = 12/255

● From ε = 12/255 till 16/255, training on Oracle-Sensitive and Oracle-Invariant 
samples in alternate iterations

● Sensitivity towards Oracle-Sensitive attacks generated by maximizing CE loss

● Robustness to Oracle-Invariant attacks

○ Generation of Oracle-Invariant attacks by minimizing LPIPS distance (using 
the model being trained) between clean and perturbed images
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 Preliminaries: Threat Model and Terminology

● Threat model considered: Moderate-ε        norm bound of 16/255
● Human prediction is referred to as the Oracle Label
● Types of perturbations within the defined threat model:

○ Oracle-Invariant images: Do not change Oracle prediction
■ Adversarial examples generated from Normally trained models
■ Adversarial examples at low perturbation bounds (ε = 8/255)

○ Oracle-Sensitive images: Flip the Oracle prediction
■ Adversarial examples generated from Adversarially Trained models at 

large perturbation bounds (ε = 32/255)
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Goals and Evaluation Metrics

● Robustness against all attacks within ε = 8/255
○ Auto-Attack (AA) and Guided Adversarial Margin Attack (GAMA) PGD-100

● Robustness to Oracle-Invariant samples within ε = 16/255
○ Gradient-Free Attacks

● Robustness-Accuracy trade-off

Adversarial examples generated using Square Attack (along with AT model predictions)
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Scaling existing AT methods to larger ε bounds

Significant drop (16%) in Clean 
Accuracy when compared to 
Adversarial Training at ε = 8/255
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Oracle-Aligned Adversarial Training

LPIPS metric computed using 
an AT model can distinguish 
well between Oracle-Sensitive 
(Attack from PGD-AT model) 
and Oracle-Invariant (Attacks 
from Normally trained model) 
examples successfully. 
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