

Encouraging Intra-Class Diversity Through a Reverse Contrastive Loss for Single-Source Domain Generalization

Thomas Duboudin (ECL), Emmanuel Dellandréa (ECL), Corentin Abgrall (Thales), Liming Chen (ECL) - corresponding author: Thomas Duboudin (thomas.duboudin@ec-lyon.fr)

Motivation

Making deep networks generalize to unseen distributions is a complicated task: see **DomainBed**https://github.com/facebookresearch/DomainBed

Conclusion: no published multi-source domain generalization method yields consistently significant improvements over the standard training procedure

Research focus: simpler situation!

A class correlated pattern in training

is missing at test-time

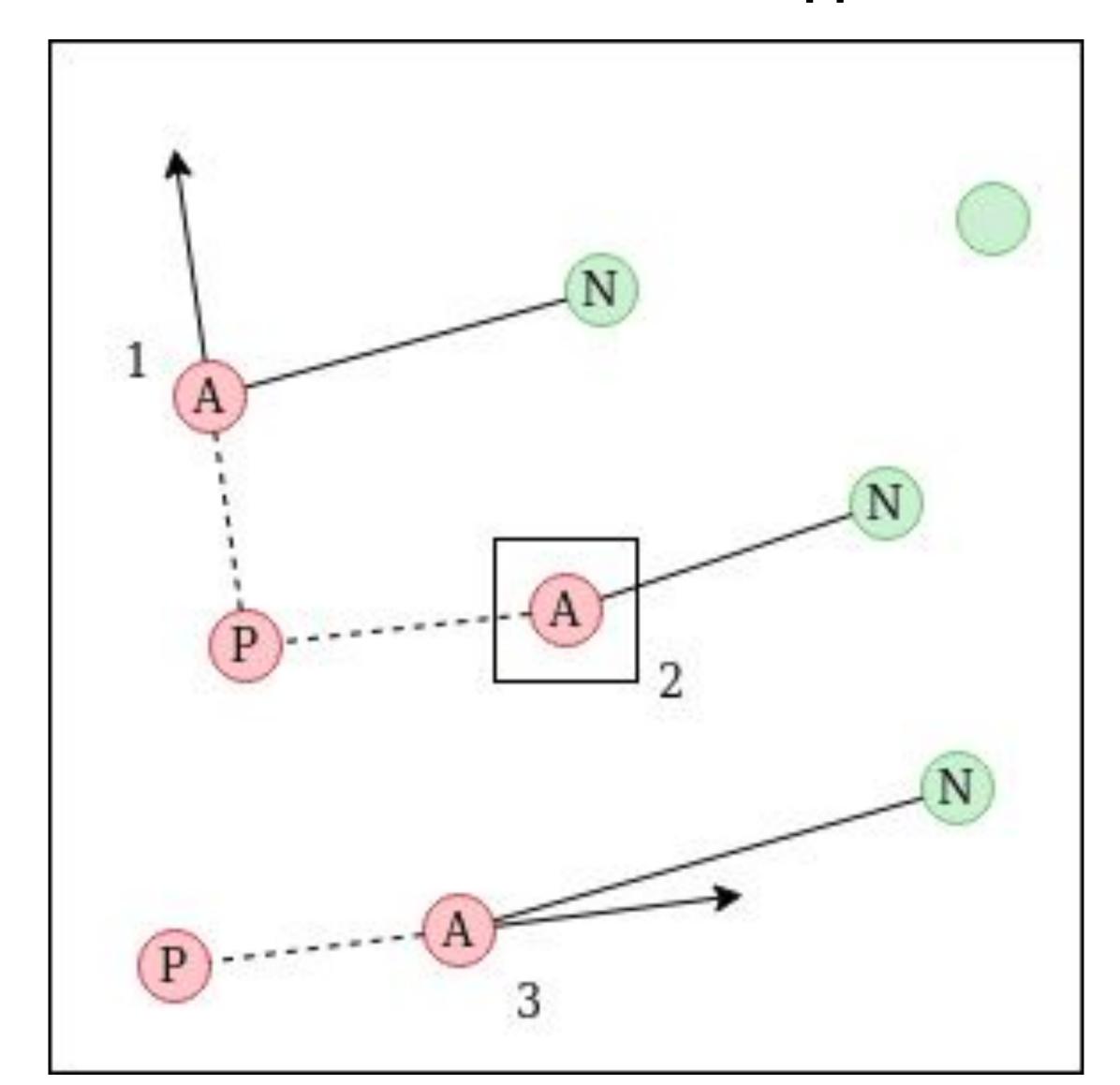
- The network only learns the most efficient patterns
- At test-time, the network fails to make a proper decision
- ⇒ Networks focusing only on the most efficient patterns is one of the reasons why they fail to generalize outside of their training distribution

Solution

Use several semantically-different classification strategies to make a decision and not only the most obvious one

No counter-examples and only one source domain

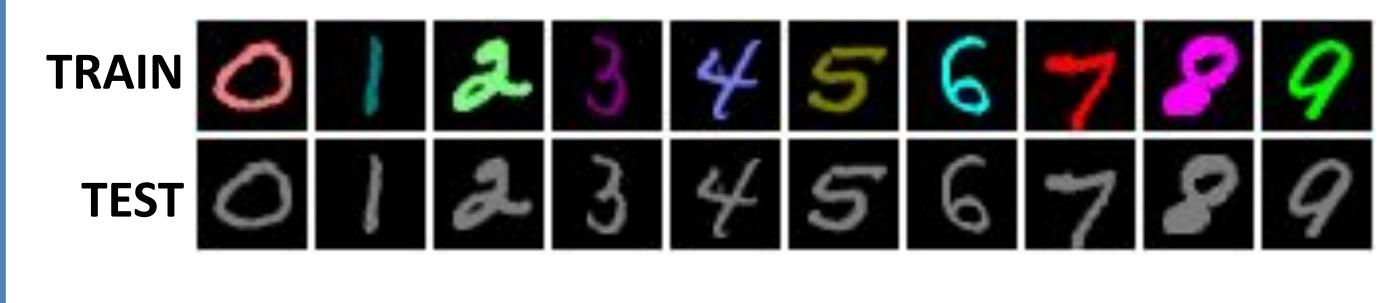
Our method: a reverse contrastive approach



- By increasing the space between points of the same class in the latent space, the network is forced to learn different patterns for a single class
- We use the following reversed contrastive loss, along with the standard cross-entropy loss for classification (with m the multiplicative margin)

$$\mathcal{L}_{RC} = \left\{ \begin{array}{l} -d(f_a, f_p) \ \textit{if} \ d(f_a, f_p) < m \times d(f_a, f_n) \\ 0 \ \textit{otherwise} \end{array} \right.$$

Results on our benchmark \



Method	Validation Accuracy	Test Accuracy
Standard Training Procedure	99.8 (± 0.006)	$26.0 (\pm 4.7)$
Dropout	99.8 (\pm 0.01)	31.9 (± 3.1)
Dropout & Orthogonality	$99.8 (\pm 0.008)$	$42.7~(\pm~2.6)$
Dropout & Covariance	99.8 (\pm 0.002)	$42.6~(\pm~2.0)$
Jigsaw Puzzle	99.8 (\pm 0.01)	$43.0 \ (\pm \ 3.0)$
(with early stopping Val>95%)	$98.5~(\pm~0.3)$	$59.9~(\pm 4.5)$
Auto-Encoder Reconstruction	99.8 (\pm 0.007)	$28.5~(\pm 4.8)$
Spectral Decoupling	99.8 (\pm 0.004)	47.7 (± 2.9)
(with early stopping Val>95%)	99.4 (\pm 0.09)	$49.8 \ (\pm \ 1.5)$
Representation Self-Challenging	99.2 (\pm 0.2)	$43.5~(\pm 5.0)$
RCL (ours - $m = \infty$)	96.0 (± 0.3)	89.9 (± 0.9)
Standard Training Procedure	97.8 (\pm 0.12)	97.8 (\pm 0.12)
on the original MNIST		

Conclusion

- Aiming for a tight-clusters large-margins latent space might be detrimental to out-of-domain generalization
- Existing methods only mitigate the damages, even in a very simple case
- Future work will be dedicated to more real-life like situations